Loading…

Heliox improves pulmonary mechanics in a pediatric porcine model of induced severe bronchospasm and independent lung mechanical ventilation

BACKGROUND: A helium-oxygen gas mixture (heliox) has low gas density and low turbulence and resistance through narrowed airways. The effects of heliox on pulmonary mechanics following severe methacholine-induced bronchospasm were investigated and compared to those of a nitrogen-oxygen gas mixture (n...

Full description

Saved in:
Bibliographic Details
Published in:Critical care (London, England) England), 1999-01, Vol.3 (2), p.65-70, Article 65
Main Authors: Orsini, AJ, Stefano, JL, Leef, KH, Jasani, M, Ginn, A, Tice, L, Nadkarni, VM
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:BACKGROUND: A helium-oxygen gas mixture (heliox) has low gas density and low turbulence and resistance through narrowed airways. The effects of heliox on pulmonary mechanics following severe methacholine-induced bronchospasm were investigated and compared to those of a nitrogen-oxygen gas mixture (nitrox) in an innovative pediatric porcine, independent lung, mechanical ventilation model. RESULTS: All of the lungs showed evidence of severe bronchospasm after methacholine challenge. Prospective definition of 'heliox response' was a 15% or greater improvement in lung function in the lung receiving heliox compared with the matched lung receiving nitrox. Seven out of 10 pigs responded to heliox therapy with respect to resistance and eight out of 10 pigs responded to heliox therapy with respect to compliance and tidal volume (P < 0.03). After crossover from nitrox to heliox, eight out of eight lungs significantly improved with respect to tidal volume, resistance and compliance (P < 0.001). After crossover from heliox to nitrox all eight lungs showed a significant increase in resistance and a significant decrease in tidal volume (P < 0.001). CONCLUSIONS: In a pediatric porcine model of acute, severe methacholine-induced bronchospasm and independent lung mechanical ventilation, administration of heliox improves pulmonary mechanics, gas flow, and ventilation. Administration of heliox should be considered for support of pediatric patients with acute, severe bronchospasm requiring mechanical ventilation through small artificial airways.
ISSN:1364-8535
1466-609X
1364-8535
DOI:10.1186/cc311