Loading…

The Structure and Stability of the Monomorphic HLA-G Are Influenced by the Nature of the Bound Peptide

The highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse αβ T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their maj...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2010-03, Vol.397 (2), p.467-480
Main Authors: Walpole, Nicholas G., Kjer-Nielsen, Lars, Kostenko, Lyudmila, McCluskey, James, Brooks, Andrew G., Rossjohn, Jamie, Clements, Craig S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The highly polymorphic major histocompatibility complex class Ia (MHC-Ia) molecules present a broad array of peptides to the clonotypically diverse αβ T-cell receptors. In contrast, MHC-Ib molecules exhibit limited polymorphism and bind a more restricted peptide repertoire, in keeping with their major role in innate immunity. Nevertheless, some MHC-Ib molecules do play a role in adaptive immunity. While human leukocyte antigen E (HLA-E), the MHC-Ib molecule, binds a very restricted repertoire of peptides, the peptide binding preferences of HLA-G, the class Ib molecule, are less stringent, although the basis by which HLA-G can bind various peptides is unclear. To investigate how HLA-G can accommodate different peptides, we compared the structure of HLA-G bound to three naturally abundant self-peptides (RIIPRHLQL, KGPPAALTL and KLPQAFYIL) and their thermal stabilities. The conformation of HLA-GKGPPAALTL was very similar to that of the HLA-GRIIPRHLQL structure. However, the structure of HLA-GKLPQAFYIL not only differed in the conformation of the bound peptide but also caused a small shift in the α2 helix of HLA-G. Furthermore, the relative stability of HLA-G was observed to be dependent on the nature of the bound peptide. These peptide-dependent effects on the substructure of the monomorphic HLA-G are likely to impact on its recognition by receptors of both innate and adaptive immune systems.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2010.01.052