Loading…

Extensive and Modular Intrinsically Disordered Segments in C. elegans TTN-1 and Implications in Filament Binding, Elasticity and Oblique Striation

TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interacti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2010-05, Vol.398 (5), p.672-689
Main Authors: Forbes, Jeffrey G., Flaherty, Denise B., Ma, Kan, Qadota, Hiroshi, Benian, Guy M., Wang, Kuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183
cites cdi_FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183
container_end_page 689
container_issue 5
container_start_page 672
container_title Journal of molecular biology
container_volume 398
creator Forbes, Jeffrey G.
Flaherty, Denise B.
Ma, Kan
Qadota, Hiroshi
Benian, Guy M.
Wang, Kuan
description TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interaction with key myofibrillar proteins as well as the conformation malleability of representative motifs of five classes of short repeats. We report that two antibodies developed to portions of TTN-1 detect an ∼ 2-MDa polypeptide on Western blots. In addition, by immunofluorescence staining, both of these antibodies localize to the I-band and may extend into the outer edge of the A-band in the obliquely striated muscle of the nematode. Six different 300-residue segments of TTN-1 were shown to variously interact with actin and/or myosin in vitro. Conformations of synthetic peptides of representative copies of each of the five classes of repeats—39-mer PEVT, 51-mer CEEEI, 42-mer AAPLE, 32-mer BLUE and 30-mer DispRep—were investigated by circular dichroism at different temperatures, ionic strengths and solvent polarities. The PEVT, CEEEI, DispRep and AAPLE peptides display a combination of a polyproline II helix and an unordered structure in aqueous solution and convert in trifluoroethanol to α-helix (PEVT, CEEEI, DispRep) and β-turn (AAPLE) structures, respectively. The octads in BLUE motifs form unstable α-helix-like structures coils in aqueous solution and negligible heptad-based, α-helical coiled-coils. The α-helical structure, as modeled by threading and molecular dynamics simulations, tends to form helical bundles and crosses based on its 8-4-2-2 hydrophobic helical patterns and charge arrays on its surface. Our finding indicates that APPLE, PEVT, CEEEI and DispRep regions are all intrinsically disordered and highly reminiscent of the conformational malleability and elasticity of vertebrate titin PEVK segments. The proposed presence of long, modular and unstable α-helical oligomerization domains in the BLUE region of TTN-1 could bundle TTN-1 and stabilize oblique striation of the sarcomere.
doi_str_mv 10.1016/j.jmb.2010.03.032
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2908218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283610002949</els_id><sourcerecordid>733533964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhS0EYsrAA7BB3rEhxT9J6ggJCUoHKg3MYsracuzbcivH6dhpRV-DJ8ZNhxFskCxZ9j3fudc-hLzkbMoZr99up9uunQqWz0zmJR6RCWeqKVQt1WMyYUyIQihZX5BnKW0ZY5Us1VNyIZgs66aqJuTX4ucAIeEBqAmOfu3d3ptIl2GImK-t8f5IP2Hqo4MIjt7CpoMwJIqBzqcUPGxMSHS1-lbw0WHZ7XzGBuzDKLpCb04E_YjBYdi8oQtv0oAWh-MI3LQe7_ZAb3PHEXtOnqyNT_Difr8k368Wq_mX4vrm83L-4bqwFa-HYl3WopZsVletU40TkrOZFJWFsi1zwfCKO1XKtTJCKulYVZqmNIK1csb5jCt5Sd6ffXf7tgNn85DReL2L2Jl41L1B_W8l4A-96Q9aNEyJ0eD1vUHs8wvSoDtMFrw3Afp90jMpKymbusxKflba2KcUYf3QhTN9ilJvdY5Sn6LUTOYlMvPq7_EeiD_ZZcG7swDyJx0Qok4WIVhwGMEO2vX4H_vfsXqv_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733533964</pqid></control><display><type>article</type><title>Extensive and Modular Intrinsically Disordered Segments in C. elegans TTN-1 and Implications in Filament Binding, Elasticity and Oblique Striation</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Forbes, Jeffrey G. ; Flaherty, Denise B. ; Ma, Kan ; Qadota, Hiroshi ; Benian, Guy M. ; Wang, Kuan</creator><creatorcontrib>Forbes, Jeffrey G. ; Flaherty, Denise B. ; Ma, Kan ; Qadota, Hiroshi ; Benian, Guy M. ; Wang, Kuan</creatorcontrib><description>TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interaction with key myofibrillar proteins as well as the conformation malleability of representative motifs of five classes of short repeats. We report that two antibodies developed to portions of TTN-1 detect an ∼ 2-MDa polypeptide on Western blots. In addition, by immunofluorescence staining, both of these antibodies localize to the I-band and may extend into the outer edge of the A-band in the obliquely striated muscle of the nematode. Six different 300-residue segments of TTN-1 were shown to variously interact with actin and/or myosin in vitro. Conformations of synthetic peptides of representative copies of each of the five classes of repeats—39-mer PEVT, 51-mer CEEEI, 42-mer AAPLE, 32-mer BLUE and 30-mer DispRep—were investigated by circular dichroism at different temperatures, ionic strengths and solvent polarities. The PEVT, CEEEI, DispRep and AAPLE peptides display a combination of a polyproline II helix and an unordered structure in aqueous solution and convert in trifluoroethanol to α-helix (PEVT, CEEEI, DispRep) and β-turn (AAPLE) structures, respectively. The octads in BLUE motifs form unstable α-helix-like structures coils in aqueous solution and negligible heptad-based, α-helical coiled-coils. The α-helical structure, as modeled by threading and molecular dynamics simulations, tends to form helical bundles and crosses based on its 8-4-2-2 hydrophobic helical patterns and charge arrays on its surface. Our finding indicates that APPLE, PEVT, CEEEI and DispRep regions are all intrinsically disordered and highly reminiscent of the conformational malleability and elasticity of vertebrate titin PEVK segments. The proposed presence of long, modular and unstable α-helical oligomerization domains in the BLUE region of TTN-1 could bundle TTN-1 and stabilize oblique striation of the sarcomere.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2010.03.032</identifier><identifier>PMID: 20346955</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Animals ; Antibodies - immunology ; C. elegans titin ; Caenorhabditis elegans - chemistry ; Caenorhabditis elegans - physiology ; Circular Dichroism ; Connectin ; Elasticity ; force sensor ; Microscopy, Fluorescence ; Models, Biological ; Models, Molecular ; Molecular Sequence Data ; Muscle Proteins - chemistry ; Muscle Proteins - metabolism ; polyproline II helix ; Protein Binding ; Protein Conformation ; Protein Kinases - chemistry ; Protein Kinases - metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; staggered helical bundle ; Staining and Labeling - methods ; Temperature</subject><ispartof>Journal of molecular biology, 2010-05, Vol.398 (5), p.672-689</ispartof><rights>2010</rights><rights>(c) 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183</citedby><cites>FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20346955$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Forbes, Jeffrey G.</creatorcontrib><creatorcontrib>Flaherty, Denise B.</creatorcontrib><creatorcontrib>Ma, Kan</creatorcontrib><creatorcontrib>Qadota, Hiroshi</creatorcontrib><creatorcontrib>Benian, Guy M.</creatorcontrib><creatorcontrib>Wang, Kuan</creatorcontrib><title>Extensive and Modular Intrinsically Disordered Segments in C. elegans TTN-1 and Implications in Filament Binding, Elasticity and Oblique Striation</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interaction with key myofibrillar proteins as well as the conformation malleability of representative motifs of five classes of short repeats. We report that two antibodies developed to portions of TTN-1 detect an ∼ 2-MDa polypeptide on Western blots. In addition, by immunofluorescence staining, both of these antibodies localize to the I-band and may extend into the outer edge of the A-band in the obliquely striated muscle of the nematode. Six different 300-residue segments of TTN-1 were shown to variously interact with actin and/or myosin in vitro. Conformations of synthetic peptides of representative copies of each of the five classes of repeats—39-mer PEVT, 51-mer CEEEI, 42-mer AAPLE, 32-mer BLUE and 30-mer DispRep—were investigated by circular dichroism at different temperatures, ionic strengths and solvent polarities. The PEVT, CEEEI, DispRep and AAPLE peptides display a combination of a polyproline II helix and an unordered structure in aqueous solution and convert in trifluoroethanol to α-helix (PEVT, CEEEI, DispRep) and β-turn (AAPLE) structures, respectively. The octads in BLUE motifs form unstable α-helix-like structures coils in aqueous solution and negligible heptad-based, α-helical coiled-coils. The α-helical structure, as modeled by threading and molecular dynamics simulations, tends to form helical bundles and crosses based on its 8-4-2-2 hydrophobic helical patterns and charge arrays on its surface. Our finding indicates that APPLE, PEVT, CEEEI and DispRep regions are all intrinsically disordered and highly reminiscent of the conformational malleability and elasticity of vertebrate titin PEVK segments. The proposed presence of long, modular and unstable α-helical oligomerization domains in the BLUE region of TTN-1 could bundle TTN-1 and stabilize oblique striation of the sarcomere.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies - immunology</subject><subject>C. elegans titin</subject><subject>Caenorhabditis elegans - chemistry</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Circular Dichroism</subject><subject>Connectin</subject><subject>Elasticity</subject><subject>force sensor</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - metabolism</subject><subject>polyproline II helix</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>staggered helical bundle</subject><subject>Staining and Labeling - methods</subject><subject>Temperature</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O0zAUhS0EYsrAA7BB3rEhxT9J6ggJCUoHKg3MYsracuzbcivH6dhpRV-DJ8ZNhxFskCxZ9j3fudc-hLzkbMoZr99up9uunQqWz0zmJR6RCWeqKVQt1WMyYUyIQihZX5BnKW0ZY5Us1VNyIZgs66aqJuTX4ucAIeEBqAmOfu3d3ptIl2GImK-t8f5IP2Hqo4MIjt7CpoMwJIqBzqcUPGxMSHS1-lbw0WHZ7XzGBuzDKLpCb04E_YjBYdi8oQtv0oAWh-MI3LQe7_ZAb3PHEXtOnqyNT_Difr8k368Wq_mX4vrm83L-4bqwFa-HYl3WopZsVletU40TkrOZFJWFsi1zwfCKO1XKtTJCKulYVZqmNIK1csb5jCt5Sd6ffXf7tgNn85DReL2L2Jl41L1B_W8l4A-96Q9aNEyJ0eD1vUHs8wvSoDtMFrw3Afp90jMpKymbusxKflba2KcUYf3QhTN9ilJvdY5Sn6LUTOYlMvPq7_EeiD_ZZcG7swDyJx0Qok4WIVhwGMEO2vX4H_vfsXqv_A</recordid><startdate>20100521</startdate><enddate>20100521</enddate><creator>Forbes, Jeffrey G.</creator><creator>Flaherty, Denise B.</creator><creator>Ma, Kan</creator><creator>Qadota, Hiroshi</creator><creator>Benian, Guy M.</creator><creator>Wang, Kuan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100521</creationdate><title>Extensive and Modular Intrinsically Disordered Segments in C. elegans TTN-1 and Implications in Filament Binding, Elasticity and Oblique Striation</title><author>Forbes, Jeffrey G. ; Flaherty, Denise B. ; Ma, Kan ; Qadota, Hiroshi ; Benian, Guy M. ; Wang, Kuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies - immunology</topic><topic>C. elegans titin</topic><topic>Caenorhabditis elegans - chemistry</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Circular Dichroism</topic><topic>Connectin</topic><topic>Elasticity</topic><topic>force sensor</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - metabolism</topic><topic>polyproline II helix</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>staggered helical bundle</topic><topic>Staining and Labeling - methods</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forbes, Jeffrey G.</creatorcontrib><creatorcontrib>Flaherty, Denise B.</creatorcontrib><creatorcontrib>Ma, Kan</creatorcontrib><creatorcontrib>Qadota, Hiroshi</creatorcontrib><creatorcontrib>Benian, Guy M.</creatorcontrib><creatorcontrib>Wang, Kuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forbes, Jeffrey G.</au><au>Flaherty, Denise B.</au><au>Ma, Kan</au><au>Qadota, Hiroshi</au><au>Benian, Guy M.</au><au>Wang, Kuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extensive and Modular Intrinsically Disordered Segments in C. elegans TTN-1 and Implications in Filament Binding, Elasticity and Oblique Striation</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2010-05-21</date><risdate>2010</risdate><volume>398</volume><issue>5</issue><spage>672</spage><epage>689</epage><pages>672-689</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>TTN-1, a titin like protein in Caenorhabditis elegans, is encoded by a single gene and consists of multiple Ig and fibronectin 3 domains, a protein kinase domain and several regions containing tandem short repeat sequences. We have characterized TTN-1's sarcomere distribution, protein interaction with key myofibrillar proteins as well as the conformation malleability of representative motifs of five classes of short repeats. We report that two antibodies developed to portions of TTN-1 detect an ∼ 2-MDa polypeptide on Western blots. In addition, by immunofluorescence staining, both of these antibodies localize to the I-band and may extend into the outer edge of the A-band in the obliquely striated muscle of the nematode. Six different 300-residue segments of TTN-1 were shown to variously interact with actin and/or myosin in vitro. Conformations of synthetic peptides of representative copies of each of the five classes of repeats—39-mer PEVT, 51-mer CEEEI, 42-mer AAPLE, 32-mer BLUE and 30-mer DispRep—were investigated by circular dichroism at different temperatures, ionic strengths and solvent polarities. The PEVT, CEEEI, DispRep and AAPLE peptides display a combination of a polyproline II helix and an unordered structure in aqueous solution and convert in trifluoroethanol to α-helix (PEVT, CEEEI, DispRep) and β-turn (AAPLE) structures, respectively. The octads in BLUE motifs form unstable α-helix-like structures coils in aqueous solution and negligible heptad-based, α-helical coiled-coils. The α-helical structure, as modeled by threading and molecular dynamics simulations, tends to form helical bundles and crosses based on its 8-4-2-2 hydrophobic helical patterns and charge arrays on its surface. Our finding indicates that APPLE, PEVT, CEEEI and DispRep regions are all intrinsically disordered and highly reminiscent of the conformational malleability and elasticity of vertebrate titin PEVK segments. The proposed presence of long, modular and unstable α-helical oligomerization domains in the BLUE region of TTN-1 could bundle TTN-1 and stabilize oblique striation of the sarcomere.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>20346955</pmid><doi>10.1016/j.jmb.2010.03.032</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2010-05, Vol.398 (5), p.672-689
issn 0022-2836
1089-8638
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2908218
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Amino Acid Sequence
Animals
Antibodies - immunology
C. elegans titin
Caenorhabditis elegans - chemistry
Caenorhabditis elegans - physiology
Circular Dichroism
Connectin
Elasticity
force sensor
Microscopy, Fluorescence
Models, Biological
Models, Molecular
Molecular Sequence Data
Muscle Proteins - chemistry
Muscle Proteins - metabolism
polyproline II helix
Protein Binding
Protein Conformation
Protein Kinases - chemistry
Protein Kinases - metabolism
Protein Structure, Secondary
Protein Structure, Tertiary
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
staggered helical bundle
Staining and Labeling - methods
Temperature
title Extensive and Modular Intrinsically Disordered Segments in C. elegans TTN-1 and Implications in Filament Binding, Elasticity and Oblique Striation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T16%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extensive%20and%20Modular%20Intrinsically%20Disordered%20Segments%20in%20C.%20elegans%20TTN-1%20and%20Implications%20in%20Filament%20Binding,%20Elasticity%20and%20Oblique%20Striation&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Forbes,%20Jeffrey%20G.&rft.date=2010-05-21&rft.volume=398&rft.issue=5&rft.spage=672&rft.epage=689&rft.pages=672-689&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2010.03.032&rft_dat=%3Cproquest_pubme%3E733533964%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-f462630765bd89d23107325ce4b4263a151d843f8a2383d054a94a20b37117183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=733533964&rft_id=info:pmid/20346955&rfr_iscdi=true