Loading…

Cutting Edge: The Th1 Response Inhibits the Generation of Peripheral Regulatory T Cells

The possibility that effector T cells can be converted into forkhead box P3(+) regulatory T cells (Tregs) has potential therapeutic implications. To analyze the relationship between Th1 effectors and Tregs, we have used a model of systemic autoimmunity in which both effector and Tregs arise from a s...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2010-01, Vol.184 (1), p.30-34
Main Authors: Caretto, David, Katzman, Shoshana D, Villarino, Alejandro V, Gallo, Eugenio, Abbas, Abul K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The possibility that effector T cells can be converted into forkhead box P3(+) regulatory T cells (Tregs) has potential therapeutic implications. To analyze the relationship between Th1 effectors and Tregs, we have used a model of systemic autoimmunity in which both effector and Tregs arise from a single population specific for a transgene-encoded systemic protein. In vitro, the presence of IFN-gamma inhibits Treg generation during activation. Using IFN-gamma reporter mice, we demonstrate that IFN-gamma-producing cells tend not to develop into Tregs, and Th1 priming of T cells prior to cell transfer limits the number of forkhead box P3(+) T cells generated in vivo. Moreover, transfer of IFN-gamma(-/-) or STAT1(-/-) T cells resulted in an increase in the number of Tregs. These data support a role for Th1 effector molecules and transcription factors in the control of peripheral Treg generation and demonstrates the limited plasticity of Th1 populations.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.0903412