Loading…

Heterogeneity in Primary Structure, Post-Translational Modifications, and Germline Gene Usage of Nine Full-Length Amyloidogenic κ1 Immunoglobulin Light Chains

Immunoglobulin light chain amyloidosis is a protein misfolding disease in which a monoclonal immunoglobulin (Ig) light chain (LC) with a critically folded β-conformation self-aggregates to form highly ordered, nonbranching amyloid fibrils. The insoluble nature of amyloid fibrils ultimately results i...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2007-12, Vol.46 (49), p.14259-14271
Main Authors: Connors, Lawreen H, Jiang, Yan, Budnik, Marianna, Théberge, Roger, Prokaeva, Tatiana, Bodi, Kip L, Seldin, David C, Costello, Catherine E, Skinner, Martha
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immunoglobulin light chain amyloidosis is a protein misfolding disease in which a monoclonal immunoglobulin (Ig) light chain (LC) with a critically folded β-conformation self-aggregates to form highly ordered, nonbranching amyloid fibrils. The insoluble nature of amyloid fibrils ultimately results in the extracellular deposition of the LC in tissues and organs throughout the body. Structural features that confer amyloidogenic properties on an Ig LC likely include amino acid sequence variations and post-translational modifications, but the specific natures of these changes remain to be defined. As part of an exploration of the effective range of amyloidogenic modifications, this study details the structural and genetic analyses of nine κ1 LC proteins. Urinary LCs were purified by size exclusion chromatography using FPLC, and structural analyses were performed by electrospray ionization, matrix-assisted laser desorption/ionization, and tandem mass spectrometry. RT-PCR amplification, cloning, and sequencing of the monoclonal LC genes were accomplished using bone marrow-derived mRNA. Clinical data were reviewed retrospectively. Characterization of the urinary κ1 LCs revealed extensive post-translational modification in all proteins, in addition to somatic mutations expected on the basis of results from genetic analyses. Post-translational modifications included disulfide-linked dimerization, S-cysteinylation, glycosylation, fragmentation, S-sulfonation, and 3-chlorotyrosine formation. Genetic analyses showed that several LC variable region germline gene donors were represented including O18/O8, O12/O2, L15, and L5. Clinical features included soft tissue, cardiac, renal, and hepatic involvement. This study demonstrated the extensive heterogeneity in primary structure, post-translational modifications, and germline gene usage that occurred in nine amyloidogenic κ1 LC proteins.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi7013773