Loading…

Mice with Tissue Inhibitor of Metalloproteinases 4 (Timp4) Deletion Succumb to Induced Myocardial Infarction but Not to Cardiac Pressure Overload

Tissue inhibitor of metalloproteinases 4 (TIMP4) is expressed highly in heart and found dysregulated in human cardiovascular diseases. It controls extracellular matrix remodeling by inhibiting matrix metalloproteinases (MMPs) and is implicated in processes including cell proliferation, apoptosis, an...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-08, Vol.285 (32), p.24487-24493
Main Authors: Koskivirta, Ilpo, Kassiri, Zamaneh, Rahkonen, Otto, Kiviranta, Riku, Oudit, Gavin Y., McKee, Trevor D., Kytö, Ville, Saraste, Antti, Jokinen, Eero, Liu, Peter P., Vuorio, Eero, Khokha, Rama
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tissue inhibitor of metalloproteinases 4 (TIMP4) is expressed highly in heart and found dysregulated in human cardiovascular diseases. It controls extracellular matrix remodeling by inhibiting matrix metalloproteinases (MMPs) and is implicated in processes including cell proliferation, apoptosis, and angiogenesis. Timp4-deficient mice (Timp4−/−) were generated to assess TIMP4 function in normal development and in models of heart disease. We deleted exons 1–3 of the Timp4 gene by homologous recombination. Timp4−/− mice are born healthy, develop normally, and produce litters of normal size and gender distribution. These mice show no compensation by overexpression of Timp1, Timp2, or Timp3 in the heart. Following cardiac pressure overload by aortic banding, Timp4−/− mice have comparable survival rate, cardiac histology, and cardiac function to controls. In this case, Timp4 deficiency is compensated by increased cardiac Timp2 expression. Strikingly, the induction of myocardial infarction (MI) leads to significantly increased mortality in Timp4−/− mice primarily due to left ventricular rupture. The post-MI mortality of Timp4−/− mice is reduced by administration of a synthetic MMP inhibitor. Furthermore, combining the genetic deletion of Mmp2 also rescues the higher post-MI mortality of Timp4−/− mice. Finally, Timp4−/− mice suffer reduced cardiac function at 20 months of age. Timp4 is not essential for murine development, although its loss moderately compromises cardiac function with aging. Timp4−/− mice are more susceptible to MI but not to pressure overload, and TIMP4 functions in its capacity as a metalloproteinase inhibitor after myocardial infarction.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.136820