Loading…

Architecture-Dependent Robustness and Bistability in a Class of Genetic Circuits

Understanding the relationship between genotype and phenotype is a challenge in systems biology. An interesting yet related issue is why a particular circuit topology is present in a cell when the same function can supposedly be obtained from an alternative architecture. Here we analyzed two topolog...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2010-08, Vol.99 (4), p.1034-1042
Main Authors: Zhang, Jiajun, Yuan, Zhanjiang, Li, Han-Xiong, Zhou, Tianshou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Understanding the relationship between genotype and phenotype is a challenge in systems biology. An interesting yet related issue is why a particular circuit topology is present in a cell when the same function can supposedly be obtained from an alternative architecture. Here we analyzed two topologically equivalent genetic circuits of coupled positive and negative feedback loops, named NAT and ALT circuits, respectively. The computational search for the oscillation volume of the entire biologically reasonable parameter region through large-scale random samplings shows that the NAT circuit exhibits a distinctly larger fraction of the oscillatory region than the ALT circuit. Such a global robustness difference between two circuits is supplemented by analyzing local robustness, including robustness to parameter perturbations and to molecular noise. In addition, detailed dynamical analysis shows that the molecular noise of both circuits can induce transient switching of the different mechanism between a stable steady state and a stable limit cycle. Our investigation on robustness and dynamics through examples provides insights into the relationship between network architecture and its function.
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2010.05.036