Loading…

Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm

A depth compensation algorithm (DCA) can effectively improve the depth localization of diffuse optical tomography (DOT) by compensating the exponentially decreased sensitivity in the deep tissue. In this study, DCA is investigated based on computer simulations, tissue phantom experiments, and human...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Biomedical Optics 2010-07, Vol.15 (4), p.046005-046005
Main Authors: Niu, Haijing, Lin, Zijing, Tian, Fenghua, Dhamne, Sameer, Liu, Hanli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363
cites cdi_FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363
container_end_page 046005
container_issue 4
container_start_page 046005
container_title Journal of Biomedical Optics
container_volume 15
creator Niu, Haijing
Lin, Zijing
Tian, Fenghua
Dhamne, Sameer
Liu, Hanli
description A depth compensation algorithm (DCA) can effectively improve the depth localization of diffuse optical tomography (DOT) by compensating the exponentially decreased sensitivity in the deep tissue. In this study, DCA is investigated based on computer simulations, tissue phantom experiments, and human brain imaging. The simulations show that DCA can largely improve the spatial resolution of DOT in addition to the depth localization, and DCA is also effective for multispectral DOT with a wide range of optical properties in the background tissue. The laboratory phantom experiment demonstrates that DCA can effectively differentiate two embedded objects at different depths in the medium. DCA is further validated by human brain imaging using a finger-tapping task. To our knowledge, this is the first demonstration to show that DCA is capable of accurately localizing cortical activations in the human brain in three dimensions.
doi_str_mv 10.1117/1.3462986
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2921418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889408212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1ERV8s-AMoO8Qi5foRPzZIdEQLqNJ0UdaWx3YmRkkc7Myg_ns8yjCCFZvra53PR_f6IPQGww3GWHzAN5RxoiR_gS5ww6EmROKXpQdJa8q5PEeXOf8AAMkVf4XOCQilJIgLNKziMCXf-TGHva_CuPd5DlszhzhWsa3mLnlfuzAcgDiavnKhbXfZV3Gagy33OQ5xm8zUPVe_wtxVzk-l2mJbniw-pt_GVLThGp21ps_-9fG8Qt_vPj-tvtQP6_uvq08PtWVMzTV1DS8bgCQcFAOnuKUb4ZkVlBInmMUCmHXeWLwxjGysYrxxpOGKtExQTq_Qx8V32m0G76wf52R6PaUwmPSsown6X2UMnd7GvSaKYIZlMXh3NEjx5658iR5Ctr7vzejjLmspy1ySYPJfUjAFUKI5kO8X0qaYc_LtaR4M-pCjxvqYY2Hf_r3AifwTXAHIAuQp-JP87Xb9eLcuOQNuDhUYMA6w9Jj-BuXdqJU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749009862</pqid></control><display><type>article</type><title>Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm</title><source>SPIE Digital Library</source><source>PubMed Central</source><creator>Niu, Haijing ; Lin, Zijing ; Tian, Fenghua ; Dhamne, Sameer ; Liu, Hanli</creator><creatorcontrib>Niu, Haijing ; Lin, Zijing ; Tian, Fenghua ; Dhamne, Sameer ; Liu, Hanli</creatorcontrib><description>A depth compensation algorithm (DCA) can effectively improve the depth localization of diffuse optical tomography (DOT) by compensating the exponentially decreased sensitivity in the deep tissue. In this study, DCA is investigated based on computer simulations, tissue phantom experiments, and human brain imaging. The simulations show that DCA can largely improve the spatial resolution of DOT in addition to the depth localization, and DCA is also effective for multispectral DOT with a wide range of optical properties in the background tissue. The laboratory phantom experiment demonstrates that DCA can effectively differentiate two embedded objects at different depths in the medium. DCA is further validated by human brain imaging using a finger-tapping task. To our knowledge, this is the first demonstration to show that DCA is capable of accurately localizing cortical activations in the human brain in three dimensions.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.3462986</identifier><identifier>PMID: 20799807</identifier><identifier>CODEN: JBOPFO</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Algorithms ; Brain ; Brain - anatomy &amp; histology ; Brain - physiology ; Brain Mapping - methods ; Computer simulation ; Diffusion ; Evoked Potentials - physiology ; Human ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Imaging, Three-Dimensional - methods ; Localization ; Pattern Recognition, Automated - methods ; Phantoms, Imaging ; Reproducibility of Results ; Research Papers: Imaging ; Sensitivity and Specificity ; Tomography ; Tomography, Optical - instrumentation ; Tomography, Optical - methods</subject><ispartof>Journal of Biomedical Optics, 2010-07, Vol.15 (4), p.046005-046005</ispartof><rights>2011 COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.</rights><rights>Copyright © 2010 Society of Photo-Optical Instrumentation Engineers 2010 Society of Photo-Optical Instrumentation Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363</citedby><cites>FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921418/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921418/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,18944,27901,27902,53766,53768,55361,55362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20799807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Haijing</creatorcontrib><creatorcontrib>Lin, Zijing</creatorcontrib><creatorcontrib>Tian, Fenghua</creatorcontrib><creatorcontrib>Dhamne, Sameer</creatorcontrib><creatorcontrib>Liu, Hanli</creatorcontrib><title>Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm</title><title>Journal of Biomedical Optics</title><addtitle>J Biomed Opt</addtitle><description>A depth compensation algorithm (DCA) can effectively improve the depth localization of diffuse optical tomography (DOT) by compensating the exponentially decreased sensitivity in the deep tissue. In this study, DCA is investigated based on computer simulations, tissue phantom experiments, and human brain imaging. The simulations show that DCA can largely improve the spatial resolution of DOT in addition to the depth localization, and DCA is also effective for multispectral DOT with a wide range of optical properties in the background tissue. The laboratory phantom experiment demonstrates that DCA can effectively differentiate two embedded objects at different depths in the medium. DCA is further validated by human brain imaging using a finger-tapping task. To our knowledge, this is the first demonstration to show that DCA is capable of accurately localizing cortical activations in the human brain in three dimensions.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Evoked Potentials - physiology</subject><subject>Human</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Localization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Phantoms, Imaging</subject><subject>Reproducibility of Results</subject><subject>Research Papers: Imaging</subject><subject>Sensitivity and Specificity</subject><subject>Tomography</subject><subject>Tomography, Optical - instrumentation</subject><subject>Tomography, Optical - methods</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS1ERV8s-AMoO8Qi5foRPzZIdEQLqNJ0UdaWx3YmRkkc7Myg_ns8yjCCFZvra53PR_f6IPQGww3GWHzAN5RxoiR_gS5ww6EmROKXpQdJa8q5PEeXOf8AAMkVf4XOCQilJIgLNKziMCXf-TGHva_CuPd5DlszhzhWsa3mLnlfuzAcgDiavnKhbXfZV3Gagy33OQ5xm8zUPVe_wtxVzk-l2mJbniw-pt_GVLThGp21ps_-9fG8Qt_vPj-tvtQP6_uvq08PtWVMzTV1DS8bgCQcFAOnuKUb4ZkVlBInmMUCmHXeWLwxjGysYrxxpOGKtExQTq_Qx8V32m0G76wf52R6PaUwmPSsown6X2UMnd7GvSaKYIZlMXh3NEjx5658iR5Ctr7vzejjLmspy1ySYPJfUjAFUKI5kO8X0qaYc_LtaR4M-pCjxvqYY2Hf_r3AifwTXAHIAuQp-JP87Xb9eLcuOQNuDhUYMA6w9Jj-BuXdqJU</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Niu, Haijing</creator><creator>Lin, Zijing</creator><creator>Tian, Fenghua</creator><creator>Dhamne, Sameer</creator><creator>Liu, Hanli</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20100701</creationdate><title>Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm</title><author>Niu, Haijing ; Lin, Zijing ; Tian, Fenghua ; Dhamne, Sameer ; Liu, Hanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Evoked Potentials - physiology</topic><topic>Human</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Localization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Phantoms, Imaging</topic><topic>Reproducibility of Results</topic><topic>Research Papers: Imaging</topic><topic>Sensitivity and Specificity</topic><topic>Tomography</topic><topic>Tomography, Optical - instrumentation</topic><topic>Tomography, Optical - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Haijing</creatorcontrib><creatorcontrib>Lin, Zijing</creatorcontrib><creatorcontrib>Tian, Fenghua</creatorcontrib><creatorcontrib>Dhamne, Sameer</creatorcontrib><creatorcontrib>Liu, Hanli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Biomedical Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Haijing</au><au>Lin, Zijing</au><au>Tian, Fenghua</au><au>Dhamne, Sameer</au><au>Liu, Hanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm</atitle><jtitle>Journal of Biomedical Optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>15</volume><issue>4</issue><spage>046005</spage><epage>046005</epage><pages>046005-046005</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><coden>JBOPFO</coden><abstract>A depth compensation algorithm (DCA) can effectively improve the depth localization of diffuse optical tomography (DOT) by compensating the exponentially decreased sensitivity in the deep tissue. In this study, DCA is investigated based on computer simulations, tissue phantom experiments, and human brain imaging. The simulations show that DCA can largely improve the spatial resolution of DOT in addition to the depth localization, and DCA is also effective for multispectral DOT with a wide range of optical properties in the background tissue. The laboratory phantom experiment demonstrates that DCA can effectively differentiate two embedded objects at different depths in the medium. DCA is further validated by human brain imaging using a finger-tapping task. To our knowledge, this is the first demonstration to show that DCA is capable of accurately localizing cortical activations in the human brain in three dimensions.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>20799807</pmid><doi>10.1117/1.3462986</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of Biomedical Optics, 2010-07, Vol.15 (4), p.046005-046005
issn 1083-3668
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2921418
source SPIE Digital Library; PubMed Central
subjects Algorithms
Brain
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Computer simulation
Diffusion
Evoked Potentials - physiology
Human
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging
Imaging, Three-Dimensional - methods
Localization
Pattern Recognition, Automated - methods
Phantoms, Imaging
Reproducibility of Results
Research Papers: Imaging
Sensitivity and Specificity
Tomography
Tomography, Optical - instrumentation
Tomography, Optical - methods
title Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A41%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20investigation%20of%20three-dimensional%20diffuse%20optical%20tomography%20with%20depth%20compensation%20algorithm&rft.jtitle=Journal%20of%20Biomedical%20Optics&rft.au=Niu,%20Haijing&rft.date=2010-07-01&rft.volume=15&rft.issue=4&rft.spage=046005&rft.epage=046005&rft.pages=046005-046005&rft.issn=1083-3668&rft.eissn=1560-2281&rft.coden=JBOPFO&rft_id=info:doi/10.1117/1.3462986&rft_dat=%3Cproquest_pubme%3E889408212%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-3d5628108260940d96c3b7e4c7332d74c1704cdeac1ba42bc9465d25692f47363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=749009862&rft_id=info:pmid/20799807&rfr_iscdi=true