Loading…

Noninvasive molecular imaging of c-Myc activation in living mice

The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeti...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (36), p.15892-15897
Main Authors: Fan-Minogue, Hua, Cao, Zhongwei, Paulmurugan, Ramasamy, Chan, Carmel T., Massoud, Tarik F., Felsher, Dean W., Gambhir, Sanjiv S., Phelps, Michael E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3
cites cdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3
container_end_page 15897
container_issue 36
container_start_page 15892
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 107
creator Fan-Minogue, Hua
Cao, Zhongwei
Paulmurugan, Ramasamy
Chan, Carmel T.
Massoud, Tarik F.
Felsher, Dean W.
Gambhir, Sanjiv S.
Phelps, Michael E.
description The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.
doi_str_mv 10.1073/pnas.1007443107
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2936612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862353</jstor_id><sourcerecordid>27862353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS1ERYfCmhUoYsMq7fU73qCiikelAhtYWx6PPXiU2IOdROq_x9EMHejKV77fPTpHB6FXGC4xSHq1j6bUCSRjtH48QSsMCreCKXiKVgBEth0j7Bw9L2UHAIp38AydE5CYSgwrdP0txRBnU8LsmiH1zk69yU0YzDbEbZN8Y9uv97YxdgyzGUOKTYhNH-ZlOwTrXqAzb_riXh7fC_Tz08cfN1_au--fb28-3LWWUzK2THqhCKXO-zX3zCrcWUy4ox0HQhQ4wMJ11dIGPDNEcsEYFlR65vFGrB29QO8PuvtpPbiNdXHMptf7XK3me51M0P9vYvilt2nWRFEhMKkC744COf2eXBn1EIp1fW-iS1PRkjMgHFhXybePyF2acqzpKgScKwG8QlcHyOZUSnb-wQoGvXSjl270qZt68ebfBA_83zIq0ByB5fIkJzUVGvNOLSFeH5BdGVM-SchOEMop_QNpuJ2F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750559605</pqid></control><display><type>article</type><title>Noninvasive molecular imaging of c-Myc activation in living mice</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Fan-Minogue, Hua ; Cao, Zhongwei ; Paulmurugan, Ramasamy ; Chan, Carmel T. ; Massoud, Tarik F. ; Felsher, Dean W. ; Gambhir, Sanjiv S. ; Phelps, Michael E.</creator><creatorcontrib>Fan-Minogue, Hua ; Cao, Zhongwei ; Paulmurugan, Ramasamy ; Chan, Carmel T. ; Massoud, Tarik F. ; Felsher, Dean W. ; Gambhir, Sanjiv S. ; Phelps, Michael E.</creatorcontrib><description>The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1007443107</identifier><identifier>PMID: 20713710</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Cancer ; Cell growth ; Cell lines ; Complementation ; Gene expression ; Heterologous transplantation ; Imaging ; Mice ; Molecular structure ; Phosphorylation ; Proteins ; Proto-Oncogene Proteins c-myc - physiology ; Rodents ; Scientific imaging ; Sensors ; Signal transduction ; Truncation ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (36), p.15892-15897</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 7, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</citedby><cites>FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862353$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862353$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20713710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan-Minogue, Hua</creatorcontrib><creatorcontrib>Cao, Zhongwei</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Chan, Carmel T.</creatorcontrib><creatorcontrib>Massoud, Tarik F.</creatorcontrib><creatorcontrib>Felsher, Dean W.</creatorcontrib><creatorcontrib>Gambhir, Sanjiv S.</creatorcontrib><creatorcontrib>Phelps, Michael E.</creatorcontrib><title>Noninvasive molecular imaging of c-Myc activation in living mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Complementation</subject><subject>Gene expression</subject><subject>Heterologous transplantation</subject><subject>Imaging</subject><subject>Mice</subject><subject>Molecular structure</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - physiology</subject><subject>Rodents</subject><subject>Scientific imaging</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Truncation</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAUhS1ERYfCmhUoYsMq7fU73qCiikelAhtYWx6PPXiU2IOdROq_x9EMHejKV77fPTpHB6FXGC4xSHq1j6bUCSRjtH48QSsMCreCKXiKVgBEth0j7Bw9L2UHAIp38AydE5CYSgwrdP0txRBnU8LsmiH1zk69yU0YzDbEbZN8Y9uv97YxdgyzGUOKTYhNH-ZlOwTrXqAzb_riXh7fC_Tz08cfN1_au--fb28-3LWWUzK2THqhCKXO-zX3zCrcWUy4ox0HQhQ4wMJ11dIGPDNEcsEYFlR65vFGrB29QO8PuvtpPbiNdXHMptf7XK3me51M0P9vYvilt2nWRFEhMKkC744COf2eXBn1EIp1fW-iS1PRkjMgHFhXybePyF2acqzpKgScKwG8QlcHyOZUSnb-wQoGvXSjl270qZt68ebfBA_83zIq0ByB5fIkJzUVGvNOLSFeH5BdGVM-SchOEMop_QNpuJ2F</recordid><startdate>20100907</startdate><enddate>20100907</enddate><creator>Fan-Minogue, Hua</creator><creator>Cao, Zhongwei</creator><creator>Paulmurugan, Ramasamy</creator><creator>Chan, Carmel T.</creator><creator>Massoud, Tarik F.</creator><creator>Felsher, Dean W.</creator><creator>Gambhir, Sanjiv S.</creator><creator>Phelps, Michael E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100907</creationdate><title>Noninvasive molecular imaging of c-Myc activation in living mice</title><author>Fan-Minogue, Hua ; Cao, Zhongwei ; Paulmurugan, Ramasamy ; Chan, Carmel T. ; Massoud, Tarik F. ; Felsher, Dean W. ; Gambhir, Sanjiv S. ; Phelps, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Complementation</topic><topic>Gene expression</topic><topic>Heterologous transplantation</topic><topic>Imaging</topic><topic>Mice</topic><topic>Molecular structure</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - physiology</topic><topic>Rodents</topic><topic>Scientific imaging</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Truncation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan-Minogue, Hua</creatorcontrib><creatorcontrib>Cao, Zhongwei</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Chan, Carmel T.</creatorcontrib><creatorcontrib>Massoud, Tarik F.</creatorcontrib><creatorcontrib>Felsher, Dean W.</creatorcontrib><creatorcontrib>Gambhir, Sanjiv S.</creatorcontrib><creatorcontrib>Phelps, Michael E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan-Minogue, Hua</au><au>Cao, Zhongwei</au><au>Paulmurugan, Ramasamy</au><au>Chan, Carmel T.</au><au>Massoud, Tarik F.</au><au>Felsher, Dean W.</au><au>Gambhir, Sanjiv S.</au><au>Phelps, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive molecular imaging of c-Myc activation in living mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-07</date><risdate>2010</risdate><volume>107</volume><issue>36</issue><spage>15892</spage><epage>15897</epage><pages>15892-15897</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20713710</pmid><doi>10.1073/pnas.1007443107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (36), p.15892-15897
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2936612
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Antibodies
Biological Sciences
Cancer
Cell growth
Cell lines
Complementation
Gene expression
Heterologous transplantation
Imaging
Mice
Molecular structure
Phosphorylation
Proteins
Proto-Oncogene Proteins c-myc - physiology
Rodents
Scientific imaging
Sensors
Signal transduction
Truncation
Tumors
title Noninvasive molecular imaging of c-Myc activation in living mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20molecular%20imaging%20of%20c-Myc%20activation%20in%20living%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fan-Minogue,%20Hua&rft.date=2010-09-07&rft.volume=107&rft.issue=36&rft.spage=15892&rft.epage=15897&rft.pages=15892-15897&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1007443107&rft_dat=%3Cjstor_pubme%3E27862353%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=750559605&rft_id=info:pmid/20713710&rft_jstor_id=27862353&rfr_iscdi=true