Loading…
Noninvasive molecular imaging of c-Myc activation in living mice
The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeti...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-09, Vol.107 (36), p.15892-15897 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3 |
container_end_page | 15897 |
container_issue | 36 |
container_start_page | 15892 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Fan-Minogue, Hua Cao, Zhongwei Paulmurugan, Ramasamy Chan, Carmel T. Massoud, Tarik F. Felsher, Dean W. Gambhir, Sanjiv S. Phelps, Michael E. |
description | The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects. |
doi_str_mv | 10.1073/pnas.1007443107 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2936612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27862353</jstor_id><sourcerecordid>27862353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhS1ERYfCmhUoYsMq7fU73qCiikelAhtYWx6PPXiU2IOdROq_x9EMHejKV77fPTpHB6FXGC4xSHq1j6bUCSRjtH48QSsMCreCKXiKVgBEth0j7Bw9L2UHAIp38AydE5CYSgwrdP0txRBnU8LsmiH1zk69yU0YzDbEbZN8Y9uv97YxdgyzGUOKTYhNH-ZlOwTrXqAzb_riXh7fC_Tz08cfN1_au--fb28-3LWWUzK2THqhCKXO-zX3zCrcWUy4ox0HQhQ4wMJ11dIGPDNEcsEYFlR65vFGrB29QO8PuvtpPbiNdXHMptf7XK3me51M0P9vYvilt2nWRFEhMKkC744COf2eXBn1EIp1fW-iS1PRkjMgHFhXybePyF2acqzpKgScKwG8QlcHyOZUSnb-wQoGvXSjl270qZt68ebfBA_83zIq0ByB5fIkJzUVGvNOLSFeH5BdGVM-SchOEMop_QNpuJ2F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750559605</pqid></control><display><type>article</type><title>Noninvasive molecular imaging of c-Myc activation in living mice</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Fan-Minogue, Hua ; Cao, Zhongwei ; Paulmurugan, Ramasamy ; Chan, Carmel T. ; Massoud, Tarik F. ; Felsher, Dean W. ; Gambhir, Sanjiv S. ; Phelps, Michael E.</creator><creatorcontrib>Fan-Minogue, Hua ; Cao, Zhongwei ; Paulmurugan, Ramasamy ; Chan, Carmel T. ; Massoud, Tarik F. ; Felsher, Dean W. ; Gambhir, Sanjiv S. ; Phelps, Michael E.</creatorcontrib><description>The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1007443107</identifier><identifier>PMID: 20713710</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Cancer ; Cell growth ; Cell lines ; Complementation ; Gene expression ; Heterologous transplantation ; Imaging ; Mice ; Molecular structure ; Phosphorylation ; Proteins ; Proto-Oncogene Proteins c-myc - physiology ; Rodents ; Scientific imaging ; Sensors ; Signal transduction ; Truncation ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (36), p.15892-15897</ispartof><rights>Copyright © 1993-2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 7, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</citedby><cites>FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/36.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27862353$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27862353$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20713710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan-Minogue, Hua</creatorcontrib><creatorcontrib>Cao, Zhongwei</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Chan, Carmel T.</creatorcontrib><creatorcontrib>Massoud, Tarik F.</creatorcontrib><creatorcontrib>Felsher, Dean W.</creatorcontrib><creatorcontrib>Gambhir, Sanjiv S.</creatorcontrib><creatorcontrib>Phelps, Michael E.</creatorcontrib><title>Noninvasive molecular imaging of c-Myc activation in living mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Cell lines</subject><subject>Complementation</subject><subject>Gene expression</subject><subject>Heterologous transplantation</subject><subject>Imaging</subject><subject>Mice</subject><subject>Molecular structure</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-myc - physiology</subject><subject>Rodents</subject><subject>Scientific imaging</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Truncation</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAUhS1ERYfCmhUoYsMq7fU73qCiikelAhtYWx6PPXiU2IOdROq_x9EMHejKV77fPTpHB6FXGC4xSHq1j6bUCSRjtH48QSsMCreCKXiKVgBEth0j7Bw9L2UHAIp38AydE5CYSgwrdP0txRBnU8LsmiH1zk69yU0YzDbEbZN8Y9uv97YxdgyzGUOKTYhNH-ZlOwTrXqAzb_riXh7fC_Tz08cfN1_au--fb28-3LWWUzK2THqhCKXO-zX3zCrcWUy4ox0HQhQ4wMJ11dIGPDNEcsEYFlR65vFGrB29QO8PuvtpPbiNdXHMptf7XK3me51M0P9vYvilt2nWRFEhMKkC744COf2eXBn1EIp1fW-iS1PRkjMgHFhXybePyF2acqzpKgScKwG8QlcHyOZUSnb-wQoGvXSjl270qZt68ebfBA_83zIq0ByB5fIkJzUVGvNOLSFeH5BdGVM-SchOEMop_QNpuJ2F</recordid><startdate>20100907</startdate><enddate>20100907</enddate><creator>Fan-Minogue, Hua</creator><creator>Cao, Zhongwei</creator><creator>Paulmurugan, Ramasamy</creator><creator>Chan, Carmel T.</creator><creator>Massoud, Tarik F.</creator><creator>Felsher, Dean W.</creator><creator>Gambhir, Sanjiv S.</creator><creator>Phelps, Michael E.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100907</creationdate><title>Noninvasive molecular imaging of c-Myc activation in living mice</title><author>Fan-Minogue, Hua ; Cao, Zhongwei ; Paulmurugan, Ramasamy ; Chan, Carmel T. ; Massoud, Tarik F. ; Felsher, Dean W. ; Gambhir, Sanjiv S. ; Phelps, Michael E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Cell lines</topic><topic>Complementation</topic><topic>Gene expression</topic><topic>Heterologous transplantation</topic><topic>Imaging</topic><topic>Mice</topic><topic>Molecular structure</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-myc - physiology</topic><topic>Rodents</topic><topic>Scientific imaging</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Truncation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan-Minogue, Hua</creatorcontrib><creatorcontrib>Cao, Zhongwei</creatorcontrib><creatorcontrib>Paulmurugan, Ramasamy</creatorcontrib><creatorcontrib>Chan, Carmel T.</creatorcontrib><creatorcontrib>Massoud, Tarik F.</creatorcontrib><creatorcontrib>Felsher, Dean W.</creatorcontrib><creatorcontrib>Gambhir, Sanjiv S.</creatorcontrib><creatorcontrib>Phelps, Michael E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan-Minogue, Hua</au><au>Cao, Zhongwei</au><au>Paulmurugan, Ramasamy</au><au>Chan, Carmel T.</au><au>Massoud, Tarik F.</au><au>Felsher, Dean W.</au><au>Gambhir, Sanjiv S.</au><au>Phelps, Michael E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive molecular imaging of c-Myc activation in living mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-09-07</date><risdate>2010</risdate><volume>107</volume><issue>36</issue><spage>15892</spage><epage>15897</epage><pages>15892-15897</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The cytoplasmic Myc protein (c-Myc) regulates various human genes and is dysregulated in many human cancers. Phosphorylation mediates the protein activation of c-Myc and is essential for the function of this transcription factor in normal cell behavior and tumor growth. To date, however, the targeting of Myc as a therapeutic approach for cancer treatment has been achieved primarily at the nonprotein level. We have developed a molecular imaging sensor for noninvasive imaging of c-Myc activity in living subjects using a split Firefly luciferase (FL) complementation strategy to detect and quantify the phosphorylation-mediated interaction between glycogen synthase kinase 3β (GSK3β) and c-Myc. This sensor system consists of two fusion proteins, GSK 35—433-CFL and NFL-c-Myc, in which specific fragments of GSK3β and c-Myc are fused with C-terminal and N-terminal fragments of the split FL, respectively. The sensor detects phosphorylation-specific GSK3β–c-Myc interaction, the imaging signal of which correlates with the steady-state and temporal regulation of c-Myc phosphorylation in cell culture. The sensor also detects inhibition of c-Myc activity via differential pathways, allowing noninvasive monitoring of c-Myc-targeted drug efficacy in intact cells and living mice. Notably, this drug inhibition is detected before changes in tumor size are apparent in mouse xenograft and liver tumor models. This reporter system not only provides an innovative way to investigate the role of functional c-Myc in normal and cancer-related biological processes, but also facilitates c-Myc–targeted drug development by providing a rapid quantitative approach to assessing cancer response to therapy in living subjects.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20713710</pmid><doi>10.1073/pnas.1007443107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-09, Vol.107 (36), p.15892-15897 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2936612 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Animals Antibodies Biological Sciences Cancer Cell growth Cell lines Complementation Gene expression Heterologous transplantation Imaging Mice Molecular structure Phosphorylation Proteins Proto-Oncogene Proteins c-myc - physiology Rodents Scientific imaging Sensors Signal transduction Truncation Tumors |
title | Noninvasive molecular imaging of c-Myc activation in living mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20molecular%20imaging%20of%20c-Myc%20activation%20in%20living%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Fan-Minogue,%20Hua&rft.date=2010-09-07&rft.volume=107&rft.issue=36&rft.spage=15892&rft.epage=15897&rft.pages=15892-15897&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1007443107&rft_dat=%3Cjstor_pubme%3E27862353%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-47f69233effb5f4c918c125e38502290e016e8710d0f4a2756441637f4f1d6be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=750559605&rft_id=info:pmid/20713710&rft_jstor_id=27862353&rfr_iscdi=true |