Loading…
Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging
Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused o...
Saved in:
Published in: | Journal of physics. Condensed matter 2010-05, Vol.22 (19), p.194121-194121 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3 |
container_end_page | 194121 |
container_issue | 19 |
container_start_page | 194121 |
container_title | Journal of physics. Condensed matter |
container_volume | 22 |
creator | Kotlarchyk, M A Botvinick, E L Putnam, A J |
description | Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures. |
doi_str_mv | 10.1088/0953-8984/22/19/194121 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855701809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhYM4OO2Mf2HIzlXZeVUl2QjS-IIBNwqzC-nkVnc0XSmTKmXm15uyx0ZRcCCQxfnu4dx7ELqi5AUlSq2JbnmjtBJrxtZU1ycoo4_QivKONp1QN4_R6gSdo6elfCaECMXFE3TOiJJScLlCebO32boJcrizU0gDTj3e3_qcdhDxIbicypRnN80Z8FzCsMPRFsh4-g5wB7ng0eYpuAh4qj5fFsAOHrs09MnZiDP0EdxP53Cwu6pforPexgLP7v8L9OnN64-bd831h7fvN6-uG9dqOjWS9JIRT71mzDLtpdeeCO6Y5ZJsWbvVloOHXjHJe9tzsF3nfNcypYW3BPgFenn0HeftAbyDoSaMZsw1R741yQbzpzKEvdmlb4Zp0XJKqsHze4Ocvs5QJnMIxUGMdoA0F6PaThDFOvUAspWEKqIr2R3J5bClHueUhxKzNGuW0sxSmmHMUG2OzdbBq9-3OY39qrICzREIaTyp_zYzo-8rT__m_xPiBzR-v6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855701809</pqid></control><display><type>article</type><title>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kotlarchyk, M A ; Botvinick, E L ; Putnam, A J</creator><creatorcontrib>Kotlarchyk, M A ; Botvinick, E L ; Putnam, A J</creatorcontrib><description>Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/19/194121</identifier><identifier>PMID: 20877437</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biomimetic Materials - chemistry ; Confocal ; Elastic Modulus ; Fibrin ; Hydrogels ; Hydrogels - chemistry ; Imaging ; Lasers ; Materials Testing - methods ; Mechanical properties ; Microscopy, Confocal - methods ; Microstructure ; Optical Tweezers ; Three dimensional ; Viscosity</subject><ispartof>Journal of physics. Condensed matter, 2010-05, Vol.22 (19), p.194121-194121</ispartof><rights>2010 IOP Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</citedby><cites>FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20877437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotlarchyk, M A</creatorcontrib><creatorcontrib>Botvinick, E L</creatorcontrib><creatorcontrib>Putnam, A J</creatorcontrib><title>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.</description><subject>Biomimetic Materials - chemistry</subject><subject>Confocal</subject><subject>Elastic Modulus</subject><subject>Fibrin</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Imaging</subject><subject>Lasers</subject><subject>Materials Testing - methods</subject><subject>Mechanical properties</subject><subject>Microscopy, Confocal - methods</subject><subject>Microstructure</subject><subject>Optical Tweezers</subject><subject>Three dimensional</subject><subject>Viscosity</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUuLFDEUhYM4OO2Mf2HIzlXZeVUl2QjS-IIBNwqzC-nkVnc0XSmTKmXm15uyx0ZRcCCQxfnu4dx7ELqi5AUlSq2JbnmjtBJrxtZU1ycoo4_QivKONp1QN4_R6gSdo6elfCaECMXFE3TOiJJScLlCebO32boJcrizU0gDTj3e3_qcdhDxIbicypRnN80Z8FzCsMPRFsh4-g5wB7ng0eYpuAh4qj5fFsAOHrs09MnZiDP0EdxP53Cwu6pforPexgLP7v8L9OnN64-bd831h7fvN6-uG9dqOjWS9JIRT71mzDLtpdeeCO6Y5ZJsWbvVloOHXjHJe9tzsF3nfNcypYW3BPgFenn0HeftAbyDoSaMZsw1R741yQbzpzKEvdmlb4Zp0XJKqsHze4Ocvs5QJnMIxUGMdoA0F6PaThDFOvUAspWEKqIr2R3J5bClHueUhxKzNGuW0sxSmmHMUG2OzdbBq9-3OY39qrICzREIaTyp_zYzo-8rT__m_xPiBzR-v6c</recordid><startdate>20100519</startdate><enddate>20100519</enddate><creator>Kotlarchyk, M A</creator><creator>Botvinick, E L</creator><creator>Putnam, A J</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100519</creationdate><title>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</title><author>Kotlarchyk, M A ; Botvinick, E L ; Putnam, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Confocal</topic><topic>Elastic Modulus</topic><topic>Fibrin</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Imaging</topic><topic>Lasers</topic><topic>Materials Testing - methods</topic><topic>Mechanical properties</topic><topic>Microscopy, Confocal - methods</topic><topic>Microstructure</topic><topic>Optical Tweezers</topic><topic>Three dimensional</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarchyk, M A</creatorcontrib><creatorcontrib>Botvinick, E L</creatorcontrib><creatorcontrib>Putnam, A J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarchyk, M A</au><au>Botvinick, E L</au><au>Putnam, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-05-19</date><risdate>2010</risdate><volume>22</volume><issue>19</issue><spage>194121</spage><epage>194121</epage><pages>194121-194121</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>20877437</pmid><doi>10.1088/0953-8984/22/19/194121</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2010-05, Vol.22 (19), p.194121-194121 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945310 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Biomimetic Materials - chemistry Confocal Elastic Modulus Fibrin Hydrogels Hydrogels - chemistry Imaging Lasers Materials Testing - methods Mechanical properties Microscopy, Confocal - methods Microstructure Optical Tweezers Three dimensional Viscosity |
title | Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20hydrogel%20microstructure%20using%20laser%20tweezers%20particle%20tracking%20and%20confocal%20reflection%20imaging&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kotlarchyk,%20M%20A&rft.date=2010-05-19&rft.volume=22&rft.issue=19&rft.spage=194121&rft.epage=194121&rft.pages=194121-194121&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/0953-8984/22/19/194121&rft_dat=%3Cproquest_pubme%3E855701809%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855701809&rft_id=info:pmid/20877437&rfr_iscdi=true |