Loading…

Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Condensed matter 2010-05, Vol.22 (19), p.194121-194121
Main Authors: Kotlarchyk, M A, Botvinick, E L, Putnam, A J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3
cites cdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3
container_end_page 194121
container_issue 19
container_start_page 194121
container_title Journal of physics. Condensed matter
container_volume 22
creator Kotlarchyk, M A
Botvinick, E L
Putnam, A J
description Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.
doi_str_mv 10.1088/0953-8984/22/19/194121
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>855701809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhYM4OO2Mf2HIzlXZeVUl2QjS-IIBNwqzC-nkVnc0XSmTKmXm15uyx0ZRcCCQxfnu4dx7ELqi5AUlSq2JbnmjtBJrxtZU1ycoo4_QivKONp1QN4_R6gSdo6elfCaECMXFE3TOiJJScLlCebO32boJcrizU0gDTj3e3_qcdhDxIbicypRnN80Z8FzCsMPRFsh4-g5wB7ng0eYpuAh4qj5fFsAOHrs09MnZiDP0EdxP53Cwu6pforPexgLP7v8L9OnN64-bd831h7fvN6-uG9dqOjWS9JIRT71mzDLtpdeeCO6Y5ZJsWbvVloOHXjHJe9tzsF3nfNcypYW3BPgFenn0HeftAbyDoSaMZsw1R741yQbzpzKEvdmlb4Zp0XJKqsHze4Ocvs5QJnMIxUGMdoA0F6PaThDFOvUAspWEKqIr2R3J5bClHueUhxKzNGuW0sxSmmHMUG2OzdbBq9-3OY39qrICzREIaTyp_zYzo-8rT__m_xPiBzR-v6c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855701809</pqid></control><display><type>article</type><title>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Kotlarchyk, M A ; Botvinick, E L ; Putnam, A J</creator><creatorcontrib>Kotlarchyk, M A ; Botvinick, E L ; Putnam, A J</creatorcontrib><description>Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/22/19/194121</identifier><identifier>PMID: 20877437</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Biomimetic Materials - chemistry ; Confocal ; Elastic Modulus ; Fibrin ; Hydrogels ; Hydrogels - chemistry ; Imaging ; Lasers ; Materials Testing - methods ; Mechanical properties ; Microscopy, Confocal - methods ; Microstructure ; Optical Tweezers ; Three dimensional ; Viscosity</subject><ispartof>Journal of physics. Condensed matter, 2010-05, Vol.22 (19), p.194121-194121</ispartof><rights>2010 IOP Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</citedby><cites>FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20877437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kotlarchyk, M A</creatorcontrib><creatorcontrib>Botvinick, E L</creatorcontrib><creatorcontrib>Putnam, A J</creatorcontrib><title>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.</description><subject>Biomimetic Materials - chemistry</subject><subject>Confocal</subject><subject>Elastic Modulus</subject><subject>Fibrin</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Imaging</subject><subject>Lasers</subject><subject>Materials Testing - methods</subject><subject>Mechanical properties</subject><subject>Microscopy, Confocal - methods</subject><subject>Microstructure</subject><subject>Optical Tweezers</subject><subject>Three dimensional</subject><subject>Viscosity</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUuLFDEUhYM4OO2Mf2HIzlXZeVUl2QjS-IIBNwqzC-nkVnc0XSmTKmXm15uyx0ZRcCCQxfnu4dx7ELqi5AUlSq2JbnmjtBJrxtZU1ycoo4_QivKONp1QN4_R6gSdo6elfCaECMXFE3TOiJJScLlCebO32boJcrizU0gDTj3e3_qcdhDxIbicypRnN80Z8FzCsMPRFsh4-g5wB7ng0eYpuAh4qj5fFsAOHrs09MnZiDP0EdxP53Cwu6pforPexgLP7v8L9OnN64-bd831h7fvN6-uG9dqOjWS9JIRT71mzDLtpdeeCO6Y5ZJsWbvVloOHXjHJe9tzsF3nfNcypYW3BPgFenn0HeftAbyDoSaMZsw1R741yQbzpzKEvdmlb4Zp0XJKqsHze4Ocvs5QJnMIxUGMdoA0F6PaThDFOvUAspWEKqIr2R3J5bClHueUhxKzNGuW0sxSmmHMUG2OzdbBq9-3OY39qrICzREIaTyp_zYzo-8rT__m_xPiBzR-v6c</recordid><startdate>20100519</startdate><enddate>20100519</enddate><creator>Kotlarchyk, M A</creator><creator>Botvinick, E L</creator><creator>Putnam, A J</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100519</creationdate><title>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</title><author>Kotlarchyk, M A ; Botvinick, E L ; Putnam, A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Confocal</topic><topic>Elastic Modulus</topic><topic>Fibrin</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Imaging</topic><topic>Lasers</topic><topic>Materials Testing - methods</topic><topic>Mechanical properties</topic><topic>Microscopy, Confocal - methods</topic><topic>Microstructure</topic><topic>Optical Tweezers</topic><topic>Three dimensional</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kotlarchyk, M A</creatorcontrib><creatorcontrib>Botvinick, E L</creatorcontrib><creatorcontrib>Putnam, A J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kotlarchyk, M A</au><au>Botvinick, E L</au><au>Putnam, A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2010-05-19</date><risdate>2010</risdate><volume>22</volume><issue>19</issue><spage>194121</spage><epage>194121</epage><pages>194121-194121</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>20877437</pmid><doi>10.1088/0953-8984/22/19/194121</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2010-05, Vol.22 (19), p.194121-194121
issn 0953-8984
1361-648X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2945310
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Biomimetic Materials - chemistry
Confocal
Elastic Modulus
Fibrin
Hydrogels
Hydrogels - chemistry
Imaging
Lasers
Materials Testing - methods
Mechanical properties
Microscopy, Confocal - methods
Microstructure
Optical Tweezers
Three dimensional
Viscosity
title Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20hydrogel%20microstructure%20using%20laser%20tweezers%20particle%20tracking%20and%20confocal%20reflection%20imaging&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Kotlarchyk,%20M%20A&rft.date=2010-05-19&rft.volume=22&rft.issue=19&rft.spage=194121&rft.epage=194121&rft.pages=194121-194121&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/0953-8984/22/19/194121&rft_dat=%3Cproquest_pubme%3E855701809%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-70f720d1d922a29d7d9d043c2a370b25b9a3edef8273faf3ea66cd652894da0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855701809&rft_id=info:pmid/20877437&rfr_iscdi=true