Loading…

Verification of fetal brain responses by coregistration of fetal ultrasound and fetal magnetoencephalography data

Fetal magnetoencephalography (fMEG) is used to study neurological functions of the developing fetus by measuring magnetic signals generated by electrical sources within the fetal brain. For this aim either auditory or visual stimuli are presented and evoked brain activity or spontaneous activity is...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2010-01, Vol.49 (2), p.1469-1478
Main Authors: Micheli, C., McCubbin, J., Murphy, P., Eswaran, H., Lowery, C.L., Ortiz, E., Preissl, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fetal magnetoencephalography (fMEG) is used to study neurological functions of the developing fetus by measuring magnetic signals generated by electrical sources within the fetal brain. For this aim either auditory or visual stimuli are presented and evoked brain activity or spontaneous activity is measured at the sensor level. However a limiting factor of this approach is the low signal to noise ratio (SNR) of recorded signals. To overcome this limitation, advanced signal processing techniques such as spatial filters (e.g., beamformer) can be used to increase SNR. One crucial aspect of this technique is the forward model and, in general, a simple spherical head model is used. This head model is an integral part of a model search approach to analyze the data due to the lack of exact knowledge about the location of the fetal head. In the present report we overcome this limitation by a coregistration of volumetric ultrasound images with fMEG data. In a first step we validated the ultrasound to fMEG coregistration with a phantom and were able to show that the coregistration error is below 2 cm. In the second step we compared the results gained by the model search approach to the exact location of the fetal head determined on pregnant mothers by ultrasound. The results of this study clearly show that the results of the model search approach are in accordance with the location of the fetal head.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2009.09.025