Loading…
Dynamic interplay between the collagen scaffold and tumor evolution
The extracellular matrix (ECM) is a key regulator of cell and tissue function. Traditionally, the ECM has been thought of primarily as a physical scaffold that binds cells and tissues together. However, the ECM also elicits biochemical and biophysical signaling. Controlled proteolysis and remodeling...
Saved in:
Published in: | Current opinion in cell biology 2010-10, Vol.22 (5), p.697-706 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The extracellular matrix (ECM) is a key regulator of cell and tissue function. Traditionally, the ECM has been thought of primarily as a physical scaffold that binds cells and tissues together. However, the ECM also elicits biochemical and biophysical signaling. Controlled proteolysis and remodeling of the ECM network regulate tissue tension, generate pathways for migration, and release ECM protein fragments to direct normal developmental processes such as branching morphogenesis. Collagens are major components of the ECM of which basement membrane type IV and interstitial matrix type I are the most prevalent. Here we discuss how abnormal expression, proteolysis and structure of these collagens influence cellular functions to elicit multiple effects on tumors, including proliferation, initiation, invasion, metastasis, and therapy response. |
---|---|
ISSN: | 0955-0674 1879-0410 |
DOI: | 10.1016/j.ceb.2010.08.015 |