Loading…

Regional myocardial contractile function: multiparametric strain mapping

Magnetic resonance imaging (MRI) with tissue tagging enables the quantification of multiple strain indices that can be combined through normalization into a single multiparametric index of regional myocardial contractile function. The aim of this study was to test the ability of multiparametric stra...

Full description

Saved in:
Bibliographic Details
Published in:Interactive cardiovascular and thoracic surgery 2010-06, Vol.10 (6), p.953-957
Main Authors: Cupps, Brian P, Taggar, Ajay K, Reynolds, Lina M, Lawton, Jennifer S, Pasque, Michael K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnetic resonance imaging (MRI) with tissue tagging enables the quantification of multiple strain indices that can be combined through normalization into a single multiparametric index of regional myocardial contractile function. The aim of this study was to test the ability of multiparametric strain analysis to quantify regional differences in contractile function in an ovine model of myocardial injury. Regional variance in myocardial contractile function was induced in eight sheep by the ligation of the blood supply to the anterior and apical left ventricular (LV) myocardial walls. LV systolic strain was obtained from tissue tagged MRI images. A normal strain database (n=50) defines all parameters of systolic strain and allows normalization of regional function at 15,300 LV points by calculation of a z-score. Multiparametric systolic strain z-scores were therefore determined for 15,300 points in each injured sheep left ventricle. Multiparametric z-scores were found to vary significantly by region (P
ISSN:1569-9293
1569-9285
DOI:10.1510/icvts.2009.220384