Loading…

Massively parallel sequencing and rare disease

Massively parallel sequencing has enabled the rapid, systematic identification of variants on a large scale. This has, in turn, accelerated the pace of gene discovery and disease diagnosis on a molecular level and has the potential to revolutionize methods particularly for the analysis of Mendelian...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2010-10, Vol.19 (R2), p.R119-R124
Main Authors: Ng, Sarah B., Nickerson, Deborah A., Bamshad, Michael J., Shendure, Jay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Massively parallel sequencing has enabled the rapid, systematic identification of variants on a large scale. This has, in turn, accelerated the pace of gene discovery and disease diagnosis on a molecular level and has the potential to revolutionize methods particularly for the analysis of Mendelian disease. Using massively parallel sequencing has enabled investigators to interrogate variants both in the context of linkage intervals and also on a genome-wide scale, in the absence of linkage information entirely. The primary challenge now is to distinguish between background polymorphisms and pathogenic mutations. Recently developed strategies for rare monogenic disorders have met with some early success. These strategies include filtering for potential causal variants based on frequency and function, and also ranking variants based on conservation scores and predicted deleteriousness to protein structure. Here, we review the recent literature in the use of high-throughput sequence data and its analysis in the discovery of causal mutations for rare disorders.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddq390