Loading…

Frameshift mutation near the 3' end of the COL1A1 gene of type I collagen predicts an elongated Pro alpha 1(I) chain and results in osteogenesis imperfecta type I

Osteogenesis imperfecta (OI) is a heterogeneous disorder of type I collagen of which OI type I, an autosomal dominant condition, is the mildest and most common form. Affected individuals have blue sclerae, normal stature, bone fragility without significant deformity and osteopenia. Fibroblasts from...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 1990-01, Vol.85 (1), p.282-290
Main Authors: Willing, M C, Cohn, D H, Byers, P H
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteogenesis imperfecta (OI) is a heterogeneous disorder of type I collagen of which OI type I, an autosomal dominant condition, is the mildest and most common form. Affected individuals have blue sclerae, normal stature, bone fragility without significant deformity and osteopenia. Fibroblasts from most affected individuals produce about half the expected amount of structurally normal type I collagen as a result of decreased synthesis of one of its constituent chains, pro alpha 1(I), but the nature of the mutations which result in OI type I are unknown. We describe a three generation family with OI type I in which all affected members have one normal COL1A1 allele and another from which the intragenic Eco RI restriction site near the 3' end of the gene is missing. Amplification by polymerase chain reaction and sequence determination of the normal allele and of the mutant allele in the domain that normally contains the Eco RI site demonstrated a 5-bp deletion from the mutant allele. The deletion changes the translational reading-frame beginning at the Eco RI site and predicts the synthesis of a pro alpha 1(I) chain that extends 84 amino acids beyond the normal termination. Although the mutant pro alpha 1(I) chain is synthesized in an in vitro translation system, we are unable to detect its presence in intact cells, suggesting that it is unstable and rapidly destroyed in one of the cell's degradative pathways. Our analysis of individuals with OI type I from 20 families indicates that this is a unique mutation and suggests that the phenotype can result from multiple mechanisms that decrease the synthesis of normal type I procollagen molecules, including those that alter protein stability.
ISSN:0021-9738
DOI:10.1172/jci114424