Loading…

A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP

In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylc...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 1990-05, Vol.85 (5), p.1629-1636
Main Authors: KELLEY, G. G, POESCHLA, E. M, BARRON, H. V, FORREST, J. N
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyl-adenosine (R-PIA) also completely inhibited forskolin stimulated chloride secretion. The "S" stereoisomer of PIA (S-PIA) was a less potent inhibitor of forskolin stimulated chloride secretion, consistent with the affinity profile of PIA stereoisomers for an A1 receptor. The adenosine receptor antagonists 8-phenyltheophylline and 8-cyclopentyltheophylline completely blocked the effect of 2Clado to inhibit forskolin-stimulated chloride secretion. When chloride secretion and tissue cyclic (c)AMP content were determined simultaneously in perfused glands, 2Clado completely inhibited secretion but only inhibited forskolin stimulated cAMP accumulation by 34-40%, indicating that the mechanism of inhibition of secretion by 2Clado is at least partially cAMP independent. Consistent with these results, A1 receptor agonists only modestly inhibited (9-15%) forskolin stimulated adenylate cyclase activity and 2Clado markedly inhibited chloride secretion stimulated by a permeant cAMP analogue, 8-chlorophenylthio cAMP (8CPT cAMP). These findings provide the first evidence for a high affinity A1 adenosine receptor that inhibits hormone stimulated ion transport in a model epithelia. A major portion of this inhibition occurs by a mechanism that is independent of the cAMP messenger system.
ISSN:0021-9738
1558-8238
DOI:10.1172/JCI114614