Loading…

Modeling Diauxic Glycolytic Oscillations in Yeast

Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characterized...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2010-11, Vol.99 (10), p.3191-3199
Main Authors: Hald, Bjørn Olav, Sørensen, Preben G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303
cites cdi_FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303
container_end_page 3199
container_issue 10
container_start_page 3191
container_title Biophysical journal
container_volume 99
creator Hald, Bjørn Olav
Sørensen, Preben G.
description Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characterized quantitatively by experimental quenching and bifurcation analysis. In this article, we use these methods to show that the dynamics of oscillations in a closed system is a simple transient version of the open-system dynamics. Thus, easy-setup closed-system experiments are also useful for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic switching in a closed-system experiment by feeding the yeast suspension with a glucose pulse—notably the initial NADH spike and final NADH rise. Another object of this study is to gain insight into the secondary low-flux metabolic pathways by feeding starved yeast cells with various metabolites. Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended model, the description of the transient closed-system experiments is significantly improved.
doi_str_mv 10.1016/j.bpj.2010.09.052
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2980702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349510012026</els_id><sourcerecordid>1671262419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi1ERZfCD-CCVlzgku2M449YSEio0FKpqBc4cLJcZ1IcZePFTir23-PVthVwaE-25WdezczD2CuEFQKq4351telXHMobzAokf8IWKAWvABr1lC0AQFW1MPKQPc-5B0AuAZ-xQ47QICi1YPg1tjSE8Xr5Kbj5d_DLs2Hr47CdyvUy-zAMbgpxzMswLn-Qy9MLdtC5IdPL2_OIfT_9_O3kS3VxeXZ-8vGi8qWDqdKSe5QGakDZKWrJdLXXrpOdEQplbZR0hCTASNUa1LJuqXOF4VxLqqE-Yh_2uZv5ak2tp3FKbrCbFNYubW10wf77M4af9jreWG4a0MBLwNvbgBR_zZQnuw7ZUxlopDhn2yghUJhaP05CI6Qwepf57kESlUauuEBT0Df_oX2c01hWZpviQWjZqALhHvIp5pyou58Pwe4c294Wx3bn2IKxxXGpef33Yu4r7qQW4P0eoKLnJlCyxSONntqQyE-2jeGB-D_LKbUV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>812547586</pqid></control><display><type>article</type><title>Modeling Diauxic Glycolytic Oscillations in Yeast</title><source>PubMed Central</source><creator>Hald, Bjørn Olav ; Sørensen, Preben G.</creator><creatorcontrib>Hald, Bjørn Olav ; Sørensen, Preben G.</creatorcontrib><description>Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characterized quantitatively by experimental quenching and bifurcation analysis. In this article, we use these methods to show that the dynamics of oscillations in a closed system is a simple transient version of the open-system dynamics. Thus, easy-setup closed-system experiments are also useful for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic switching in a closed-system experiment by feeding the yeast suspension with a glucose pulse—notably the initial NADH spike and final NADH rise. Another object of this study is to gain insight into the secondary low-flux metabolic pathways by feeding starved yeast cells with various metabolites. Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended model, the description of the transient closed-system experiments is significantly improved.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2010.09.052</identifier><identifier>PMID: 21081066</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetaldehyde - pharmacology ; Acetates - pharmacology ; Biological Systems and Multicellular Dynamics ; Biomass ; Biophysics ; Cells ; Computer Simulation ; Cyanides - pharmacology ; Dynamic tests ; Dynamical systems ; Dynamics ; Ethanol - pharmacology ; Fluorescence ; Glucose - pharmacology ; Glycolysis - drug effects ; Glycosylation ; Mathematical models ; Metabolism ; Models, Biological ; NADH ; NADP - metabolism ; Oscillations ; Oxidative Phosphorylation - drug effects ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - metabolism ; Switching ; Time Factors ; Yeast</subject><ispartof>Biophysical journal, 2010-11, Vol.99 (10), p.3191-3199</ispartof><rights>2010 Biophysical Society</rights><rights>Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Nov 17, 2010</rights><rights>2010 by the Biophysical Society. 2010 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303</citedby><cites>FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2980702/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2980702/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21081066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hald, Bjørn Olav</creatorcontrib><creatorcontrib>Sørensen, Preben G.</creatorcontrib><title>Modeling Diauxic Glycolytic Oscillations in Yeast</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characterized quantitatively by experimental quenching and bifurcation analysis. In this article, we use these methods to show that the dynamics of oscillations in a closed system is a simple transient version of the open-system dynamics. Thus, easy-setup closed-system experiments are also useful for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic switching in a closed-system experiment by feeding the yeast suspension with a glucose pulse—notably the initial NADH spike and final NADH rise. Another object of this study is to gain insight into the secondary low-flux metabolic pathways by feeding starved yeast cells with various metabolites. Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended model, the description of the transient closed-system experiments is significantly improved.</description><subject>Acetaldehyde - pharmacology</subject><subject>Acetates - pharmacology</subject><subject>Biological Systems and Multicellular Dynamics</subject><subject>Biomass</subject><subject>Biophysics</subject><subject>Cells</subject><subject>Computer Simulation</subject><subject>Cyanides - pharmacology</subject><subject>Dynamic tests</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Ethanol - pharmacology</subject><subject>Fluorescence</subject><subject>Glucose - pharmacology</subject><subject>Glycolysis - drug effects</subject><subject>Glycosylation</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>NADH</subject><subject>NADP - metabolism</subject><subject>Oscillations</subject><subject>Oxidative Phosphorylation - drug effects</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Switching</subject><subject>Time Factors</subject><subject>Yeast</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi1ERZfCD-CCVlzgku2M449YSEio0FKpqBc4cLJcZ1IcZePFTir23-PVthVwaE-25WdezczD2CuEFQKq4351telXHMobzAokf8IWKAWvABr1lC0AQFW1MPKQPc-5B0AuAZ-xQ47QICi1YPg1tjSE8Xr5Kbj5d_DLs2Hr47CdyvUy-zAMbgpxzMswLn-Qy9MLdtC5IdPL2_OIfT_9_O3kS3VxeXZ-8vGi8qWDqdKSe5QGakDZKWrJdLXXrpOdEQplbZR0hCTASNUa1LJuqXOF4VxLqqE-Yh_2uZv5ak2tp3FKbrCbFNYubW10wf77M4af9jreWG4a0MBLwNvbgBR_zZQnuw7ZUxlopDhn2yghUJhaP05CI6Qwepf57kESlUauuEBT0Df_oX2c01hWZpviQWjZqALhHvIp5pyou58Pwe4c294Wx3bn2IKxxXGpef33Yu4r7qQW4P0eoKLnJlCyxSONntqQyE-2jeGB-D_LKbUV</recordid><startdate>20101117</startdate><enddate>20101117</enddate><creator>Hald, Bjørn Olav</creator><creator>Sørensen, Preben G.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>M7N</scope><scope>5PM</scope></search><sort><creationdate>20101117</creationdate><title>Modeling Diauxic Glycolytic Oscillations in Yeast</title><author>Hald, Bjørn Olav ; Sørensen, Preben G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetaldehyde - pharmacology</topic><topic>Acetates - pharmacology</topic><topic>Biological Systems and Multicellular Dynamics</topic><topic>Biomass</topic><topic>Biophysics</topic><topic>Cells</topic><topic>Computer Simulation</topic><topic>Cyanides - pharmacology</topic><topic>Dynamic tests</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Ethanol - pharmacology</topic><topic>Fluorescence</topic><topic>Glucose - pharmacology</topic><topic>Glycolysis - drug effects</topic><topic>Glycosylation</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>NADH</topic><topic>NADP - metabolism</topic><topic>Oscillations</topic><topic>Oxidative Phosphorylation - drug effects</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Switching</topic><topic>Time Factors</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hald, Bjørn Olav</creatorcontrib><creatorcontrib>Sørensen, Preben G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hald, Bjørn Olav</au><au>Sørensen, Preben G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Diauxic Glycolytic Oscillations in Yeast</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2010-11-17</date><risdate>2010</risdate><volume>99</volume><issue>10</issue><spage>3191</spage><epage>3199</epage><pages>3191-3199</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can be characterized quantitatively by experimental quenching and bifurcation analysis. In this article, we use these methods to show that the dynamics of oscillations in a closed system is a simple transient version of the open-system dynamics. Thus, easy-setup closed-system experiments are also useful for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic switching in a closed-system experiment by feeding the yeast suspension with a glucose pulse—notably the initial NADH spike and final NADH rise. Another object of this study is to gain insight into the secondary low-flux metabolic pathways by feeding starved yeast cells with various metabolites. Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended model, the description of the transient closed-system experiments is significantly improved.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21081066</pmid><doi>10.1016/j.bpj.2010.09.052</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2010-11, Vol.99 (10), p.3191-3199
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2980702
source PubMed Central
subjects Acetaldehyde - pharmacology
Acetates - pharmacology
Biological Systems and Multicellular Dynamics
Biomass
Biophysics
Cells
Computer Simulation
Cyanides - pharmacology
Dynamic tests
Dynamical systems
Dynamics
Ethanol - pharmacology
Fluorescence
Glucose - pharmacology
Glycolysis - drug effects
Glycosylation
Mathematical models
Metabolism
Models, Biological
NADH
NADP - metabolism
Oscillations
Oxidative Phosphorylation - drug effects
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - metabolism
Switching
Time Factors
Yeast
title Modeling Diauxic Glycolytic Oscillations in Yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Diauxic%20Glycolytic%20Oscillations%20in%20Yeast&rft.jtitle=Biophysical%20journal&rft.au=Hald,%20Bj%C3%B8rn%20Olav&rft.date=2010-11-17&rft.volume=99&rft.issue=10&rft.spage=3191&rft.epage=3199&rft.pages=3191-3199&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2010.09.052&rft_dat=%3Cproquest_pubme%3E1671262419%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-752c15903015f6ede9f3c7af5f946153965ae1e40956d91753defaf3c2275e303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=812547586&rft_id=info:pmid/21081066&rfr_iscdi=true