Loading…

Characterization of taurine as anti-obesity agent in C. elegans

Taurine plays an important role in reducing physiological stress. Recent studies indicated that taurine may serve as an anti-obesity agent at the cellular level. This study characterizes taurine's potential anti-obesity function in C. elegans, which have become a popular in vivo model for under...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical science 2010-08, Vol.17 Suppl 1 (Suppl 1), p.S33-S33
Main Authors: Kim, Hye Min, Do, Chang-Hee, Lee, Dong Hee
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Taurine plays an important role in reducing physiological stress. Recent studies indicated that taurine may serve as an anti-obesity agent at the cellular level. This study characterizes taurine's potential anti-obesity function in C. elegans, which have become a popular in vivo model for understanding the regulatory basis of lipid biosynthesis and deposition. Two strains of C. elegans were raised on a normal or high-fat diet: N2 (normal) and RB1600, a mutant in tub-1 that serves as a tubby homologue and functions parallel to the 3-ketoacyl-CoA thiolase gene (kat-1) in regulating lipid accumulation. Taurine's effect on lipid deposition was characterized according to assays of Sudan black B staining, triglyceride content measurement, food consumption, and mobility comparison. When N2 was treated with taurine after the culture in the high-fat media, the worms showed lower lipid accumulation in the assays of the Sudan black B staining and the triglyceride quantification. The anti-obesity effect was less evident in the experiment for RB1600. When the amount of taurine was increased for the high-fat-diet-treated N2 strain, fat deposition decreased and mobility increased in a dose-dependent manner. In the food consumption assays, taurine did not cause a significant change in food intake. Taken together, these results strongly imply that taurine plays an important role in reducing fat deposition by modulating cellular pathways for lipid accumulation and stimulating mobility, but not the pathways for lipid biosynthesis and food intake.
ISSN:1423-0127
1021-7770
1423-0127
DOI:10.1186/1423-0127-17-S1-S33