Loading…
Activation of AMP-activated Protein Kinase by Temozolomide Contributes to Apoptosis in Glioblastoma Cells via p53 Activation and mTORC1 Inhibition
Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumors including malignant glioblastoma. The mechanism of TMZ-induced glioblastoma cell death and apoptosis, however, is not fully understood. Here, we tested the potential involvement of AMP-activated protein kin...
Saved in:
Published in: | The Journal of biological chemistry 2010-12, Vol.285 (52), p.40461-40471 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Methylating drugs such as temozolomide (TMZ) are widely used in the treatment of brain tumors including malignant glioblastoma. The mechanism of TMZ-induced glioblastoma cell death and apoptosis, however, is not fully understood. Here, we tested the potential involvement of AMP-activated protein kinase (AMPK) in this process. We found that methylating agents TMZ and N-methyl-N′-nitro-N-nitrosoguanidine induce AMPK activation in primary cultured human glioblastoma and glioblastoma cell lines. TMZ-induced O6-methylguanine production is involved in AMPK activation. O6-benzylguanine, an O6-methylguanine-DNA methyltransferase inhibitor, enhances TMZ-induced O6-methylguanine production, leading to enhanced reactive oxygen species production, which serves as an upstream signal for AMPK activation. Activation of AMPK is involved in TMZ-induced glioblastoma cell death and apoptosis. AMPK inhibitor (Compound C) or AMPKα siRNA knockdown inhibits TMZ-induced glioblastoma cell death and apoptosis, whereas AMPK activator 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside enhances it. In further studies, we found that activation of AMPK is involved in TMZ-induced p53 activation and subsequent p21, Noxa, and Bax up-regulation. Activation of AMPK by TMZ also inhibits mTOR complex 1 (mTORC1) signaling and promotes anti-apoptosis protein Bcl-2 down-regulation, which together mediate TMZ-induced pro-cell apoptosis effects. Our study suggests that activation of AMPK by TMZ contributes to glioblastoma cell apoptosis, probably by promoting p53 activation and inhibiting mTORC1 signaling. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.164046 |