Loading…
Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1
The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (...
Saved in:
Published in: | The Journal of biological chemistry 2010-12, Vol.285 (52), p.40706-40713 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463 |
container_end_page | 40713 |
container_issue | 52 |
container_start_page | 40706 |
container_title | The Journal of biological chemistry |
container_volume | 285 |
creator | Dong, Chun-Hai Jang, Mihue Scharein, Benjamin Malach, Anuschka Rivarola, Maximo Liesch, Jeff Groth, Georg Hwang, Inhwan Chang, Caren |
description | The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1. |
doi_str_mv | 10.1074/jbc.M110.146605 |
format | article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3003370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819762383</els_id><sourcerecordid>S0021925819762383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</originalsourceid><addsrcrecordid>eNp1kF9LHDEUxUOp1NX2uW81H8DRm2T-5aWwyFYFRVhX6FvIJHdmo-NkSUbBb98MUxf70BAI5-bcc-BHyHcGZwyq_PyxMWe3bFJ5WULxiSwY1CITBfv9mSwAOMskL-pDchTjI6STS_aFHHKQBRd1vSBPt75H89LrQJcxeuP06PxAfUvHLdJl0I2zfhddpKvNmtHVuH3rcUC6RoO70QeqB0t1kl3KmHTa3JvuXTfo3g3dKV1vVuwrOWh1H_Hb3_eYPPxabS6uspu7y-uL5U1mCsHHjLcFtCBLI5qKY90WVc1zyXOOadKYhtdlYYUwtjWNrTQrIV0pq1JYk9u8FMfk55y7e2me0RocxqB7tQvuWYc35bVT__4Mbqs6_6oEgBAVpIDzOcAEH2PAdr_LQE3cVeKuJu5q5p42fnys3PvfQSfDyWxotVe6Cy6qh3sOTACTgpdiKpWzAxOaV4dBReNwMGhdQDMq691_6_8A2KSb_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Dong, Chun-Hai ; Jang, Mihue ; Scharein, Benjamin ; Malach, Anuschka ; Rivarola, Maximo ; Liesch, Jeff ; Groth, Georg ; Hwang, Inhwan ; Chang, Caren</creator><creatorcontrib>Dong, Chun-Hai ; Jang, Mihue ; Scharein, Benjamin ; Malach, Anuschka ; Rivarola, Maximo ; Liesch, Jeff ; Groth, Georg ; Hwang, Inhwan ; Chang, Caren</creatorcontrib><description>The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.146605</identifier><identifier>PMID: 20952388</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BiFC ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Ethylene ; Ethylenes - metabolism ; ETR1 ; Genetic Complementation Test ; Golgi Apparatus - genetics ; Golgi Apparatus - metabolism ; Hormone Receptors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Nicotiana - genetics ; Nicotiana - metabolism ; Plant ; Plant Biology ; Protein Binding ; Protein Structure, Tertiary ; Protein-Protein Interactions ; Receptor Regulation ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RTE1 ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2010-12, Vol.285 (52), p.40706-40713</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</citedby><cites>FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003370/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819762383$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20952388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chun-Hai</creatorcontrib><creatorcontrib>Jang, Mihue</creatorcontrib><creatorcontrib>Scharein, Benjamin</creatorcontrib><creatorcontrib>Malach, Anuschka</creatorcontrib><creatorcontrib>Rivarola, Maximo</creatorcontrib><creatorcontrib>Liesch, Jeff</creatorcontrib><creatorcontrib>Groth, Georg</creatorcontrib><creatorcontrib>Hwang, Inhwan</creatorcontrib><creatorcontrib>Chang, Caren</creatorcontrib><title>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.</description><subject>Amino Acid Substitution</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BiFC</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Ethylene</subject><subject>Ethylenes - metabolism</subject><subject>ETR1</subject><subject>Genetic Complementation Test</subject><subject>Golgi Apparatus - genetics</subject><subject>Golgi Apparatus - metabolism</subject><subject>Hormone Receptors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Plant</subject><subject>Plant Biology</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-Protein Interactions</subject><subject>Receptor Regulation</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RTE1</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LHDEUxUOp1NX2uW81H8DRm2T-5aWwyFYFRVhX6FvIJHdmo-NkSUbBb98MUxf70BAI5-bcc-BHyHcGZwyq_PyxMWe3bFJ5WULxiSwY1CITBfv9mSwAOMskL-pDchTjI6STS_aFHHKQBRd1vSBPt75H89LrQJcxeuP06PxAfUvHLdJl0I2zfhddpKvNmtHVuH3rcUC6RoO70QeqB0t1kl3KmHTa3JvuXTfo3g3dKV1vVuwrOWh1H_Hb3_eYPPxabS6uspu7y-uL5U1mCsHHjLcFtCBLI5qKY90WVc1zyXOOadKYhtdlYYUwtjWNrTQrIV0pq1JYk9u8FMfk55y7e2me0RocxqB7tQvuWYc35bVT__4Mbqs6_6oEgBAVpIDzOcAEH2PAdr_LQE3cVeKuJu5q5p42fnys3PvfQSfDyWxotVe6Cy6qh3sOTACTgpdiKpWzAxOaV4dBReNwMGhdQDMq691_6_8A2KSb_A</recordid><startdate>20101224</startdate><enddate>20101224</enddate><creator>Dong, Chun-Hai</creator><creator>Jang, Mihue</creator><creator>Scharein, Benjamin</creator><creator>Malach, Anuschka</creator><creator>Rivarola, Maximo</creator><creator>Liesch, Jeff</creator><creator>Groth, Georg</creator><creator>Hwang, Inhwan</creator><creator>Chang, Caren</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20101224</creationdate><title>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</title><author>Dong, Chun-Hai ; Jang, Mihue ; Scharein, Benjamin ; Malach, Anuschka ; Rivarola, Maximo ; Liesch, Jeff ; Groth, Georg ; Hwang, Inhwan ; Chang, Caren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Substitution</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BiFC</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Ethylene</topic><topic>Ethylenes - metabolism</topic><topic>ETR1</topic><topic>Genetic Complementation Test</topic><topic>Golgi Apparatus - genetics</topic><topic>Golgi Apparatus - metabolism</topic><topic>Hormone Receptors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Plant</topic><topic>Plant Biology</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-Protein Interactions</topic><topic>Receptor Regulation</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RTE1</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chun-Hai</creatorcontrib><creatorcontrib>Jang, Mihue</creatorcontrib><creatorcontrib>Scharein, Benjamin</creatorcontrib><creatorcontrib>Malach, Anuschka</creatorcontrib><creatorcontrib>Rivarola, Maximo</creatorcontrib><creatorcontrib>Liesch, Jeff</creatorcontrib><creatorcontrib>Groth, Georg</creatorcontrib><creatorcontrib>Hwang, Inhwan</creatorcontrib><creatorcontrib>Chang, Caren</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chun-Hai</au><au>Jang, Mihue</au><au>Scharein, Benjamin</au><au>Malach, Anuschka</au><au>Rivarola, Maximo</au><au>Liesch, Jeff</au><au>Groth, Georg</au><au>Hwang, Inhwan</au><au>Chang, Caren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-12-24</date><risdate>2010</risdate><volume>285</volume><issue>52</issue><spage>40706</spage><epage>40713</epage><pages>40706-40713</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20952388</pmid><doi>10.1074/jbc.M110.146605</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2010-12, Vol.285 (52), p.40706-40713 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3003370 |
source | ScienceDirect; PubMed Central |
subjects | Amino Acid Substitution Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism BiFC Endoplasmic Reticulum - genetics Endoplasmic Reticulum - metabolism Ethylene Ethylenes - metabolism ETR1 Genetic Complementation Test Golgi Apparatus - genetics Golgi Apparatus - metabolism Hormone Receptors Membrane Proteins - genetics Membrane Proteins - metabolism Nicotiana - genetics Nicotiana - metabolism Plant Plant Biology Protein Binding Protein Structure, Tertiary Protein-Protein Interactions Receptor Regulation Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Recombinant Proteins - genetics Recombinant Proteins - metabolism RTE1 Signal Transduction - physiology |
title | Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Association%20of%20the%20Arabidopsis%20ETR1%20Ethylene%20Receptor%20and%20a%20Regulator%20of%20Ethylene%20Signaling,%20RTE1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Dong,%20Chun-Hai&rft.date=2010-12-24&rft.volume=285&rft.issue=52&rft.spage=40706&rft.epage=40713&rft.pages=40706-40713&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.146605&rft_dat=%3Celsevier_pubme%3ES0021925819762383%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20952388&rfr_iscdi=true |