Loading…

Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1

The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2010-12, Vol.285 (52), p.40706-40713
Main Authors: Dong, Chun-Hai, Jang, Mihue, Scharein, Benjamin, Malach, Anuschka, Rivarola, Maximo, Liesch, Jeff, Groth, Georg, Hwang, Inhwan, Chang, Caren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463
cites cdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463
container_end_page 40713
container_issue 52
container_start_page 40706
container_title The Journal of biological chemistry
container_volume 285
creator Dong, Chun-Hai
Jang, Mihue
Scharein, Benjamin
Malach, Anuschka
Rivarola, Maximo
Liesch, Jeff
Groth, Georg
Hwang, Inhwan
Chang, Caren
description The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.
doi_str_mv 10.1074/jbc.M110.146605
format article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3003370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819762383</els_id><sourcerecordid>S0021925819762383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</originalsourceid><addsrcrecordid>eNp1kF9LHDEUxUOp1NX2uW81H8DRm2T-5aWwyFYFRVhX6FvIJHdmo-NkSUbBb98MUxf70BAI5-bcc-BHyHcGZwyq_PyxMWe3bFJ5WULxiSwY1CITBfv9mSwAOMskL-pDchTjI6STS_aFHHKQBRd1vSBPt75H89LrQJcxeuP06PxAfUvHLdJl0I2zfhddpKvNmtHVuH3rcUC6RoO70QeqB0t1kl3KmHTa3JvuXTfo3g3dKV1vVuwrOWh1H_Hb3_eYPPxabS6uspu7y-uL5U1mCsHHjLcFtCBLI5qKY90WVc1zyXOOadKYhtdlYYUwtjWNrTQrIV0pq1JYk9u8FMfk55y7e2me0RocxqB7tQvuWYc35bVT__4Mbqs6_6oEgBAVpIDzOcAEH2PAdr_LQE3cVeKuJu5q5p42fnys3PvfQSfDyWxotVe6Cy6qh3sOTACTgpdiKpWzAxOaV4dBReNwMGhdQDMq691_6_8A2KSb_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</title><source>ScienceDirect</source><source>PubMed Central</source><creator>Dong, Chun-Hai ; Jang, Mihue ; Scharein, Benjamin ; Malach, Anuschka ; Rivarola, Maximo ; Liesch, Jeff ; Groth, Georg ; Hwang, Inhwan ; Chang, Caren</creator><creatorcontrib>Dong, Chun-Hai ; Jang, Mihue ; Scharein, Benjamin ; Malach, Anuschka ; Rivarola, Maximo ; Liesch, Jeff ; Groth, Georg ; Hwang, Inhwan ; Chang, Caren</creatorcontrib><description>The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.146605</identifier><identifier>PMID: 20952388</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BiFC ; Endoplasmic Reticulum - genetics ; Endoplasmic Reticulum - metabolism ; Ethylene ; Ethylenes - metabolism ; ETR1 ; Genetic Complementation Test ; Golgi Apparatus - genetics ; Golgi Apparatus - metabolism ; Hormone Receptors ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Nicotiana - genetics ; Nicotiana - metabolism ; Plant ; Plant Biology ; Protein Binding ; Protein Structure, Tertiary ; Protein-Protein Interactions ; Receptor Regulation ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RTE1 ; Signal Transduction - physiology</subject><ispartof>The Journal of biological chemistry, 2010-12, Vol.285 (52), p.40706-40713</ispartof><rights>2010 © 2010 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2010 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</citedby><cites>FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3003370/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819762383$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3536,27905,27906,45761,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20952388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Chun-Hai</creatorcontrib><creatorcontrib>Jang, Mihue</creatorcontrib><creatorcontrib>Scharein, Benjamin</creatorcontrib><creatorcontrib>Malach, Anuschka</creatorcontrib><creatorcontrib>Rivarola, Maximo</creatorcontrib><creatorcontrib>Liesch, Jeff</creatorcontrib><creatorcontrib>Groth, Georg</creatorcontrib><creatorcontrib>Hwang, Inhwan</creatorcontrib><creatorcontrib>Chang, Caren</creatorcontrib><title>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.</description><subject>Amino Acid Substitution</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BiFC</subject><subject>Endoplasmic Reticulum - genetics</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Ethylene</subject><subject>Ethylenes - metabolism</subject><subject>ETR1</subject><subject>Genetic Complementation Test</subject><subject>Golgi Apparatus - genetics</subject><subject>Golgi Apparatus - metabolism</subject><subject>Hormone Receptors</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Plant</subject><subject>Plant Biology</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Protein-Protein Interactions</subject><subject>Receptor Regulation</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RTE1</subject><subject>Signal Transduction - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kF9LHDEUxUOp1NX2uW81H8DRm2T-5aWwyFYFRVhX6FvIJHdmo-NkSUbBb98MUxf70BAI5-bcc-BHyHcGZwyq_PyxMWe3bFJ5WULxiSwY1CITBfv9mSwAOMskL-pDchTjI6STS_aFHHKQBRd1vSBPt75H89LrQJcxeuP06PxAfUvHLdJl0I2zfhddpKvNmtHVuH3rcUC6RoO70QeqB0t1kl3KmHTa3JvuXTfo3g3dKV1vVuwrOWh1H_Hb3_eYPPxabS6uspu7y-uL5U1mCsHHjLcFtCBLI5qKY90WVc1zyXOOadKYhtdlYYUwtjWNrTQrIV0pq1JYk9u8FMfk55y7e2me0RocxqB7tQvuWYc35bVT__4Mbqs6_6oEgBAVpIDzOcAEH2PAdr_LQE3cVeKuJu5q5p42fnys3PvfQSfDyWxotVe6Cy6qh3sOTACTgpdiKpWzAxOaV4dBReNwMGhdQDMq691_6_8A2KSb_A</recordid><startdate>20101224</startdate><enddate>20101224</enddate><creator>Dong, Chun-Hai</creator><creator>Jang, Mihue</creator><creator>Scharein, Benjamin</creator><creator>Malach, Anuschka</creator><creator>Rivarola, Maximo</creator><creator>Liesch, Jeff</creator><creator>Groth, Georg</creator><creator>Hwang, Inhwan</creator><creator>Chang, Caren</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20101224</creationdate><title>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</title><author>Dong, Chun-Hai ; Jang, Mihue ; Scharein, Benjamin ; Malach, Anuschka ; Rivarola, Maximo ; Liesch, Jeff ; Groth, Georg ; Hwang, Inhwan ; Chang, Caren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino Acid Substitution</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BiFC</topic><topic>Endoplasmic Reticulum - genetics</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Ethylene</topic><topic>Ethylenes - metabolism</topic><topic>ETR1</topic><topic>Genetic Complementation Test</topic><topic>Golgi Apparatus - genetics</topic><topic>Golgi Apparatus - metabolism</topic><topic>Hormone Receptors</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Plant</topic><topic>Plant Biology</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Protein-Protein Interactions</topic><topic>Receptor Regulation</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RTE1</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Chun-Hai</creatorcontrib><creatorcontrib>Jang, Mihue</creatorcontrib><creatorcontrib>Scharein, Benjamin</creatorcontrib><creatorcontrib>Malach, Anuschka</creatorcontrib><creatorcontrib>Rivarola, Maximo</creatorcontrib><creatorcontrib>Liesch, Jeff</creatorcontrib><creatorcontrib>Groth, Georg</creatorcontrib><creatorcontrib>Hwang, Inhwan</creatorcontrib><creatorcontrib>Chang, Caren</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Chun-Hai</au><au>Jang, Mihue</au><au>Scharein, Benjamin</au><au>Malach, Anuschka</au><au>Rivarola, Maximo</au><au>Liesch, Jeff</au><au>Groth, Georg</au><au>Hwang, Inhwan</au><au>Chang, Caren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2010-12-24</date><risdate>2010</risdate><volume>285</volume><issue>52</issue><spage>40706</spage><epage>40713</epage><pages>40706-40713</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The plant hormone ethylene plays important roles in growth and development. Ethylene is perceived by a family of membrane-bound receptors that actively repress ethylene responses. When the receptors bind ethylene, their signaling is shut off, activating responses. REVERSION-TO-ETHYLENE SENSITIVITY (RTE1) encodes a novel membrane protein conserved in plants and metazoans. Genetic analyses in Arabidopsis thaliana suggest that RTE1 promotes the signaling state of the ethylene receptor ETR1 through the ETR1 N-terminal domain. RTE1 and ETR1 have been shown to co-localize to the endoplasmic reticulum (ER) and Golgi apparatus in Arabidopsis. Here, we demonstrate a physical association of RTE1 and ETR1 using in vivo and in vitro methods. Interaction of RTE1 and ETR1 was revealed in vivo by bimolecular fluorescence complementation (BiFC) in a tobacco cell transient assay and in stably transformed Arabidopsis. The association was also observed using a truncated version of ETR1 comprising the N terminus (amino acids 1–349). Interaction of RTE1 and ETR1 was confirmed by co-immunoprecipitation from Arabidopsis. The interaction occurs with high affinity (Kd, 117 nm) based on tryptophan fluorescence spectroscopy using purified recombinant RTE1 and a tryptophan-less version of purified recombinant ETR1. An amino acid substitution (C161Y) in RTE1 that is known to confer an ETR1 loss-of-function phenotype correspondingly gives a nearly 12-fold increase in the dissociation constant (Kd, 1.38 μm). These findings indicate that a high affinity association of RTE1 and ETR1 is important in the regulation of ETR1.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20952388</pmid><doi>10.1074/jbc.M110.146605</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2010-12, Vol.285 (52), p.40706-40713
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3003370
source ScienceDirect; PubMed Central
subjects Amino Acid Substitution
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
BiFC
Endoplasmic Reticulum - genetics
Endoplasmic Reticulum - metabolism
Ethylene
Ethylenes - metabolism
ETR1
Genetic Complementation Test
Golgi Apparatus - genetics
Golgi Apparatus - metabolism
Hormone Receptors
Membrane Proteins - genetics
Membrane Proteins - metabolism
Nicotiana - genetics
Nicotiana - metabolism
Plant
Plant Biology
Protein Binding
Protein Structure, Tertiary
Protein-Protein Interactions
Receptor Regulation
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
RTE1
Signal Transduction - physiology
title Molecular Association of the Arabidopsis ETR1 Ethylene Receptor and a Regulator of Ethylene Signaling, RTE1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Association%20of%20the%20Arabidopsis%20ETR1%20Ethylene%20Receptor%20and%20a%20Regulator%20of%20Ethylene%20Signaling,%20RTE1&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Dong,%20Chun-Hai&rft.date=2010-12-24&rft.volume=285&rft.issue=52&rft.spage=40706&rft.epage=40713&rft.pages=40706-40713&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.146605&rft_dat=%3Celsevier_pubme%3ES0021925819762383%3C/elsevier_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-2f50f096c3b72e8f578249242ec3bbcb2865d33cdfcbd7a16016099763dc4d463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/20952388&rfr_iscdi=true