Loading…
Reduced Monomeric CD4 Is the Preferred Receptor for HIV
CD4 is a co-receptor for binding of T cells to antigen-presenting cells and the primary receptor for the human immunodeficiency virus type 1 (HIV). CD4 exists in three different forms on the cell surface defined by the state of the domain 2 cysteine residues: an oxidized monomer, a reduced monomer,...
Saved in:
Published in: | The Journal of biological chemistry 2010-12, Vol.285 (52), p.40793-40799 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CD4 is a co-receptor for binding of T cells to antigen-presenting cells and the primary receptor for the human immunodeficiency virus type 1 (HIV). CD4 exists in three different forms on the cell surface defined by the state of the domain 2 cysteine residues: an oxidized monomer, a reduced monomer, and a covalent dimer linked through the domain 2 cysteines. The disulfide-linked dimer is the preferred immune co-receptor. The form of CD4 that is preferred by HIV was examined in this study. HIV entry and envelope-mediated cell-cell fusion were tested using cells expressing comparable levels of wild-type or disulfide bond mutant CD4 in which the domain 2 cysteines were mutated to alanine. Eliminating the domain 2 disulfide bond increased entry of HIV reporter viruses and enhanced HIV envelope-mediated cell-cell fusion 2–4-fold. These observations suggest that HIV enters susceptible cells preferably through monomeric reduced CD4, whereas dimeric CD4 is the preferred receptor for binding to antigen-presenting cells. Cleavage of the domain 2 disulfide bond is possibly involved in the conformational change in CD4 associated with fusion of the HIV and cell membranes. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.190579 |