Loading…

Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization

mRNAs are transported, localized, and translated in axons of sensory neurons. However, little is known about the full repertoire of transcripts present in embryonic and adult sensory axons and how this pool of mRNAs dynamically changes during development. Here, we used a compartmentalized chamber to...

Full description

Saved in:
Bibliographic Details
Published in:RNA (Cambridge) 2011-01, Vol.17 (1), p.85-98
Main Authors: Gumy, Laura F, Yeo, Giles S H, Tung, Yi-Chun Loraine, Zivraj, Krishna H, Willis, Dianna, Coppola, Giovanni, Lam, Brian Y H, Twiss, Jeffery L, Holt, Christine E, Fawcett, James W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:mRNAs are transported, localized, and translated in axons of sensory neurons. However, little is known about the full repertoire of transcripts present in embryonic and adult sensory axons and how this pool of mRNAs dynamically changes during development. Here, we used a compartmentalized chamber to isolate mRNA from pure embryonic and adult sensory axons devoid of non-neuronal or cell body contamination. Genome-wide microarray analysis reveals that a previously unappreciated number of transcripts are localized in sensory axons and that this repertoire changes during development toward adulthood. Embryonic axons are enriched in transcripts encoding cytoskeletal-related proteins with a role in axonal outgrowth. Surprisingly, adult axons are enriched in mRNAs encoding immune molecules with a role in nociception. Additionally, we show Tubulin-beta3 (Tubb3) mRNA is present only in embryonic axons, with Tubb3 locally synthesized in axons of embryonic, but not adult neurons where it is transported, thus validating our experimental approach. In summary, we provide the first complete catalog of embryonic and adult sensory axonal mRNAs. In addition we show that this pool of axonal mRNAs dynamically changes during development. These data provide an important resource for studies on the role of local protein synthesis in axon regeneration and nociception during neuronal development.
ISSN:1355-8382
1469-9001
DOI:10.1261/rna.2386111