Loading…

Partial target organ resistance to thyroid hormone

An 8-year old boy with a small goiter, normal basal metabolic rate (BMR), and elevated serum thyroid hormone levels (thyroxine [T(4)] 19.5 mug per 100 ml, free T(4) 4 ng per 100 ml, triiodothyronine [T(3)] 505 ng per 100 ml) was studied. He had measurable serum thyroid-stimulating hormone (TSH) leve...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of clinical investigation 1973-04, Vol.52 (4), p.776-782
Main Authors: Bode, H H, Danon, M, Weintraub, B D, Maloof, F, Crawford, J D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An 8-year old boy with a small goiter, normal basal metabolic rate (BMR), and elevated serum thyroid hormone levels (thyroxine [T(4)] 19.5 mug per 100 ml, free T(4) 4 ng per 100 ml, triiodothyronine [T(3)] 505 ng per 100 ml) was studied. He had measurable serum thyroid-stimulating hormone (TSH) levels (average 5.5 muU per ml), and the thyroxine-binding proteins, hearing, and epiphyseal structures were normal. There was no parental consanguinity nor were there thyroid abnormalities either in the parents or six siblings.Methimazole, 50 mg daily, depressed thyroxine synthesis (T(4) 10.5, free T(4) 2.5) and caused a rise in TSH to 11 muU per ml. After discontinuation of treatment, TSH declined to 4.2 muU per ml and chemical hyperthyroidism returned (T(4) 21.0 mug per 100 ml, free T(4) 4.2, and total T(3) 475 ng per 100 ml, radioactive iodine [RAI] uptake 68%), but studies of BMR and insensible water loss showed the patient to be clinically euthyroid. Thyrotropin-releasing hormone (TRH), 200 mug i.v., caused a brisk rise in TSH to 28 muU per ml, with T(4) rising to 28 mug per 100 ml, free T(4) to 5.6, and T(3) to 730 ng per 100 ml, thus indicating that the pituitary-thyroid system was intact and that the patient's TSH was biologically active. The unusual sensitivity of the pituitary cells to TRH in spite of the markedly elevated serum thyroid hormone levels also suggested that the pituitary was insensitive to suppression by T(3) or T(4). Serum dilution studies gave immunochemical evidence that this patient's TSH was normal. Neither propranolol, 60 mg, chlorpromazine, 30 mg, nor prednisone, 15 mg daily, influenced thyroid indices. Steroid treatment, however, suppressed the pituitary response to TRH, T(3) in doses increased over a period of 12 days to as much as 150 mug daily caused a rise in serum T(3) to above 800 ng per 100 ml, a decline of T(4) to euthyroid levels (T(4) 9.5 mug per 100 ml, free T(4) 1.6 ng per 100 ml), suppression of the RAI uptake from 68% to 35%, and marked blunting of the responses to TRH, but the BMR and insensible water loss remained normal. The data suggest that the patient's disorder is due to partial resistance to thyroid hormone.
ISSN:0021-9738
DOI:10.1172/JCI107240