Loading…

Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles

Abstract A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx....

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2011-03, Vol.32 (7), p.1957-1966
Main Authors: Wu, Elizabeth C, Andrew, Jennifer S, Cheng, Lingyun, Freeman, William R, Pearson, Lindsey, Sailor, Michael J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 μm thick and 35 μm across. An organic linker, 1-undecylenic acid, was attached to the Si–H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2010.11.013