Loading…

SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning

Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Mass.), 2010-12, Vol.68 (5), p.894-906
Main Authors: Robbins, Elissa M., Krupp, Alexander J., Perez de Arce, Karen, Ghosh, Ananda K., Fogel, Adam I., Boucard, Antony, Südhof, Thomas C., Stein, Valentin, Biederer, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43
cites cdi_FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43
container_end_page 906
container_issue 5
container_start_page 894
container_title Neuron (Cambridge, Mass.)
container_volume 68
creator Robbins, Elissa M.
Krupp, Alexander J.
Perez de Arce, Karen
Ghosh, Ananda K.
Fogel, Adam I.
Boucard, Antony
Südhof, Thomas C.
Stein, Valentin
Biederer, Thomas
description Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes. ► SynCAM 1 dynamically affects synapse number and maintenance ► The plasticity mechanism of long-term depression is regulated by SynCAM 1 ► Synaptic effects of SynCAM 1 are linked to altered—even improved—behavioral output
doi_str_mv 10.1016/j.neuron.2010.11.003
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3026433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627310009104</els_id><sourcerecordid>821599001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43</originalsourceid><addsrcrecordid>eNqFkUuP0zAUhS0EYsrAP0AoEgtWKb62Y8cbpKq8RioP8diwsRzntuMqcTp2MlL-PS4dhscCVvfq-rvH9jmEPAa6BAry-X4ZcIpDWDJ6HMGSUn6HLIBqVQrQ-i5Z0FrLUjLFz8iDlPaUgqg03CdnDHKX-QX59nkO69W7AopVe4nJD6F4OQfbe2e7bi4-4W7q7IipyJw9JCzeT32DsbChLS76g3VjKj52No3e-XH-Md6gjcGH3UNyb2u7hI9u6jn5-vrVl_XbcvPhzcV6tSldVddjqRSzVior5RYElUBRSORcCbCy1o1joEA2omrqqtGKceU4sAYlb1vk2gp-Tl6cdA9T02PrMIzRduYQfW_jbAbrzZ8nwV-a3XBtOGVScJ4Fnt0IxOFqwjSa3ieHXWcDDlMydSWVqllV_Z9kUGmdfc7k07_I_TDFkH0wUFFeC8aUypQ4US4OKUXc3r4aqDmmbPbmlLI5pmwATE4trz35_ce3Sz9j_WUJZt-vPUaTnMfgsPUR3Wjawf_7hu_c8bmB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503842277</pqid></control><display><type>article</type><title>SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Robbins, Elissa M. ; Krupp, Alexander J. ; Perez de Arce, Karen ; Ghosh, Ananda K. ; Fogel, Adam I. ; Boucard, Antony ; Südhof, Thomas C. ; Stein, Valentin ; Biederer, Thomas</creator><creatorcontrib>Robbins, Elissa M. ; Krupp, Alexander J. ; Perez de Arce, Karen ; Ghosh, Ananda K. ; Fogel, Adam I. ; Boucard, Antony ; Südhof, Thomas C. ; Stein, Valentin ; Biederer, Thomas</creatorcontrib><description>Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes. ► SynCAM 1 dynamically affects synapse number and maintenance ► The plasticity mechanism of long-term depression is regulated by SynCAM 1 ► Synaptic effects of SynCAM 1 are linked to altered—even improved—behavioral output</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2010.11.003</identifier><identifier>PMID: 21145003</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Autism ; Cell Adhesion Molecule-1 ; Cell Adhesion Molecules - genetics ; Cell Adhesion Molecules - metabolism ; Cell Adhesion Molecules, Neuronal - genetics ; Cell Adhesion Molecules, Neuronal - metabolism ; Immunoglobulins - genetics ; Immunoglobulins - metabolism ; Long-Term Synaptic Depression - genetics ; Long-Term Synaptic Depression - physiology ; Maze Learning - physiology ; Membranes ; Mice ; Mice, 129 Strain ; Mice, Knockout ; Mice, Neurologic Mutants ; Mice, Transgenic ; Microscopy ; Neuronal Plasticity - genetics ; Neuronal Plasticity - physiology ; Neurons ; Protein expression ; Proteins ; Rodents ; Spatial Behavior ; Studies ; Synapses - genetics ; Synapses - metabolism ; Synaptic Membranes - genetics ; Synaptic Membranes - metabolism</subject><ispartof>Neuron (Cambridge, Mass.), 2010-12, Vol.68 (5), p.894-906</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Dec 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43</citedby><cites>FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21145003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robbins, Elissa M.</creatorcontrib><creatorcontrib>Krupp, Alexander J.</creatorcontrib><creatorcontrib>Perez de Arce, Karen</creatorcontrib><creatorcontrib>Ghosh, Ananda K.</creatorcontrib><creatorcontrib>Fogel, Adam I.</creatorcontrib><creatorcontrib>Boucard, Antony</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><creatorcontrib>Stein, Valentin</creatorcontrib><creatorcontrib>Biederer, Thomas</creatorcontrib><title>SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes. ► SynCAM 1 dynamically affects synapse number and maintenance ► The plasticity mechanism of long-term depression is regulated by SynCAM 1 ► Synaptic effects of SynCAM 1 are linked to altered—even improved—behavioral output</description><subject>Animals</subject><subject>Autism</subject><subject>Cell Adhesion Molecule-1</subject><subject>Cell Adhesion Molecules - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Adhesion Molecules, Neuronal - genetics</subject><subject>Cell Adhesion Molecules, Neuronal - metabolism</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - metabolism</subject><subject>Long-Term Synaptic Depression - genetics</subject><subject>Long-Term Synaptic Depression - physiology</subject><subject>Maze Learning - physiology</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, 129 Strain</subject><subject>Mice, Knockout</subject><subject>Mice, Neurologic Mutants</subject><subject>Mice, Transgenic</subject><subject>Microscopy</subject><subject>Neuronal Plasticity - genetics</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Spatial Behavior</subject><subject>Studies</subject><subject>Synapses - genetics</subject><subject>Synapses - metabolism</subject><subject>Synaptic Membranes - genetics</subject><subject>Synaptic Membranes - metabolism</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUuP0zAUhS0EYsrAP0AoEgtWKb62Y8cbpKq8RioP8diwsRzntuMqcTp2MlL-PS4dhscCVvfq-rvH9jmEPAa6BAry-X4ZcIpDWDJ6HMGSUn6HLIBqVQrQ-i5Z0FrLUjLFz8iDlPaUgqg03CdnDHKX-QX59nkO69W7AopVe4nJD6F4OQfbe2e7bi4-4W7q7IipyJw9JCzeT32DsbChLS76g3VjKj52No3e-XH-Md6gjcGH3UNyb2u7hI9u6jn5-vrVl_XbcvPhzcV6tSldVddjqRSzVior5RYElUBRSORcCbCy1o1joEA2omrqqtGKceU4sAYlb1vk2gp-Tl6cdA9T02PrMIzRduYQfW_jbAbrzZ8nwV-a3XBtOGVScJ4Fnt0IxOFqwjSa3ieHXWcDDlMydSWVqllV_Z9kUGmdfc7k07_I_TDFkH0wUFFeC8aUypQ4US4OKUXc3r4aqDmmbPbmlLI5pmwATE4trz35_ce3Sz9j_WUJZt-vPUaTnMfgsPUR3Wjawf_7hu_c8bmB</recordid><startdate>20101209</startdate><enddate>20101209</enddate><creator>Robbins, Elissa M.</creator><creator>Krupp, Alexander J.</creator><creator>Perez de Arce, Karen</creator><creator>Ghosh, Ananda K.</creator><creator>Fogel, Adam I.</creator><creator>Boucard, Antony</creator><creator>Südhof, Thomas C.</creator><creator>Stein, Valentin</creator><creator>Biederer, Thomas</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101209</creationdate><title>SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning</title><author>Robbins, Elissa M. ; Krupp, Alexander J. ; Perez de Arce, Karen ; Ghosh, Ananda K. ; Fogel, Adam I. ; Boucard, Antony ; Südhof, Thomas C. ; Stein, Valentin ; Biederer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Autism</topic><topic>Cell Adhesion Molecule-1</topic><topic>Cell Adhesion Molecules - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Adhesion Molecules, Neuronal - genetics</topic><topic>Cell Adhesion Molecules, Neuronal - metabolism</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - metabolism</topic><topic>Long-Term Synaptic Depression - genetics</topic><topic>Long-Term Synaptic Depression - physiology</topic><topic>Maze Learning - physiology</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, 129 Strain</topic><topic>Mice, Knockout</topic><topic>Mice, Neurologic Mutants</topic><topic>Mice, Transgenic</topic><topic>Microscopy</topic><topic>Neuronal Plasticity - genetics</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Spatial Behavior</topic><topic>Studies</topic><topic>Synapses - genetics</topic><topic>Synapses - metabolism</topic><topic>Synaptic Membranes - genetics</topic><topic>Synaptic Membranes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robbins, Elissa M.</creatorcontrib><creatorcontrib>Krupp, Alexander J.</creatorcontrib><creatorcontrib>Perez de Arce, Karen</creatorcontrib><creatorcontrib>Ghosh, Ananda K.</creatorcontrib><creatorcontrib>Fogel, Adam I.</creatorcontrib><creatorcontrib>Boucard, Antony</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><creatorcontrib>Stein, Valentin</creatorcontrib><creatorcontrib>Biederer, Thomas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robbins, Elissa M.</au><au>Krupp, Alexander J.</au><au>Perez de Arce, Karen</au><au>Ghosh, Ananda K.</au><au>Fogel, Adam I.</au><au>Boucard, Antony</au><au>Südhof, Thomas C.</au><au>Stein, Valentin</au><au>Biederer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2010-12-09</date><risdate>2010</risdate><volume>68</volume><issue>5</issue><spage>894</spage><epage>906</epage><pages>894-906</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Synaptogenesis is required for wiring neuronal circuits in the developing brain and continues to remodel adult networks. However, the molecules organizing synapse development and maintenance in vivo remain incompletely understood. We now demonstrate that the immunoglobulin adhesion molecule SynCAM 1 dynamically alters synapse number and plasticity. Overexpression of SynCAM 1 in transgenic mice promotes excitatory synapse number, while loss of SynCAM 1 results in fewer excitatory synapses. By turning off SynCAM 1 overexpression in transgenic brains, we show that it maintains the newly induced synapses. SynCAM 1 also functions at mature synapses to alter their plasticity by regulating long-term depression. Consistent with these effects on neuronal connectivity, SynCAM 1 expression affects spatial learning, with knock-out mice learning better. The reciprocal effects of increased SynCAM 1 expression and loss reveal that this adhesion molecule contributes to the regulation of synapse number and plasticity, and impacts how neuronal networks undergo activity-dependent changes. ► SynCAM 1 dynamically affects synapse number and maintenance ► The plasticity mechanism of long-term depression is regulated by SynCAM 1 ► Synaptic effects of SynCAM 1 are linked to altered—even improved—behavioral output</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21145003</pmid><doi>10.1016/j.neuron.2010.11.003</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2010-12, Vol.68 (5), p.894-906
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3026433
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Autism
Cell Adhesion Molecule-1
Cell Adhesion Molecules - genetics
Cell Adhesion Molecules - metabolism
Cell Adhesion Molecules, Neuronal - genetics
Cell Adhesion Molecules, Neuronal - metabolism
Immunoglobulins - genetics
Immunoglobulins - metabolism
Long-Term Synaptic Depression - genetics
Long-Term Synaptic Depression - physiology
Maze Learning - physiology
Membranes
Mice
Mice, 129 Strain
Mice, Knockout
Mice, Neurologic Mutants
Mice, Transgenic
Microscopy
Neuronal Plasticity - genetics
Neuronal Plasticity - physiology
Neurons
Protein expression
Proteins
Rodents
Spatial Behavior
Studies
Synapses - genetics
Synapses - metabolism
Synaptic Membranes - genetics
Synaptic Membranes - metabolism
title SynCAM 1 Adhesion Dynamically Regulates Synapse Number and Impacts Plasticity and Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SynCAM%201%20Adhesion%20Dynamically%20Regulates%20Synapse%20Number%20and%20Impacts%20Plasticity%20and%20Learning&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Robbins,%20Elissa%20M.&rft.date=2010-12-09&rft.volume=68&rft.issue=5&rft.spage=894&rft.epage=906&rft.pages=894-906&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2010.11.003&rft_dat=%3Cproquest_pubme%3E821599001%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c588t-772aa67a66f140610e46e33741a689bc21716b45b85b97237c312be63dde39a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503842277&rft_id=info:pmid/21145003&rfr_iscdi=true