Loading…

Nuclear factor of activated T cells (NFAT) signaling regulates PTEN expression and intestinal cell differentiation

The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1-c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell d...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell 2011-02, Vol.22 (3), p.412-420
Main Authors: Wang, Qingding, Zhou, Yuning, Jackson, Lindsey N, Johnson, Sara M, Chow, Chi-Wing, Evers, B Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nuclear factor of activated T cell (NFAT) proteins are a family of transcription factors (NFATc1-c4) involved in the regulation of cell differentiation and adaptation. Previously we demonstrated that inhibition of phosphatidylinositol 3-kinase or overexpression of PTEN enhanced intestinal cell differentiation. Here we show that treatment of intestinal-derived cells with the differentiating agent sodium butyrate (NaBT) increased PTEN expression, NFAT binding activity, and NFAT mRNA expression, whereas pretreatment with the NFAT signaling inhibitor cyclosporine A (CsA) blocked NaBT-mediated PTEN induction. Moreover, knockdown of NFATc1 or NFATc4, but not NFATc2 or NFATc3, attenuated NaBT-induced PTEN expression. Knockdown of NFATc1 decreased PTEN expression and increased the phosphorylation levels of Akt and downstream targets Foxo1 and GSK-3α/β. Furthermore, overexpression of NFATc1 or the NFATc4 active mutant increased PTEN and p27(kip1) expression and decreased Akt phosphorylation. In addition, pretreatment with CsA blocked NaBT-mediated induction of intestinal alkaline phosphatase (IAP) activity and villin and p27(kip1) expression; knockdown of either NFATc1 or NFATc4 attenuated NaBT-induced IAP activity. We provide evidence showing that NFATc1 and NFATc4 are regulators of PTEN expression. Importantly, our results suggest that NFATc1 and NFATc4 regulation of intestinal cell differentiation may be through PTEN regulation.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.E10-07-0598