Loading…

Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice

Searching for efficacious and safe agents for the chemoprevention and therapy of prostate cancer has become the top priority of research. The objective of this study was to determine the effects of a group of tanshinones from a Chinese herb Salvia Miltiorrhiza, cryptotanshinone (CT), tanshinone IIA...

Full description

Saved in:
Bibliographic Details
Published in:International journal of cancer 2011-09, Vol.129 (5), p.1042-1052
Main Authors: Gong, Yi, Li, Yanli, Lu, Yin, Li, Linglin, Abdolmaleky, Hamid, Blackburn, George L., Zhou, Jin‐Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Searching for efficacious and safe agents for the chemoprevention and therapy of prostate cancer has become the top priority of research. The objective of this study was to determine the effects of a group of tanshinones from a Chinese herb Salvia Miltiorrhiza, cryptotanshinone (CT), tanshinone IIA (T2A) and tanshinone I (T1) on prostate cancer. The in vitro studies showed that these tanshinones inhibited the growth of human prostate cancer cell lines in a dose‐dependent manner via cell cycle arrest and apoptosis induction. Among three compounds, T1 had the most potent activity with IC50s around 3–6 μM. On the other hand, tanshinones had much less adverse effects on the growth of normal prostate epithelial cells. The epigenetic pathway focused array assay identified Aurora A kinase as a possible target of tanshinone actions. The expression of Aurora A was overexpressed in prostate cancer cell lines. Moreover, knockdown of Aurora A in prostate cancer cells significantly decreased cell growth. Tanshinones significantly downregulated the Aurora A expression, suggesting Aurora A may be a functional target of tanshinones. Tanshinones, especially T1, also showed potent anti‐angiogenesis activity in vitro and in vivo. Furthermore, T1 inhibited the growth of DU145 prostate tumor in mice associated with induction of apoptosis, decrease of proliferation, inhibition of angiogenesis and downregulation of Aurora A, whereas it did not alter food intake or body weight. Our results support that T1 may be an efficacious and safe chemopreventive or therapeutic agent against prostate cancer progression.
ISSN:0020-7136
1097-0215
DOI:10.1002/ijc.25678