Loading…
Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End
Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is su...
Saved in:
Published in: | Plant physiology (Bethesda) 2011-02, Vol.155 (2), p.694-705 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993 |
container_end_page | 705 |
container_issue | 2 |
container_start_page | 694 |
container_title | Plant physiology (Bethesda) |
container_volume | 155 |
creator | Timm, Stefan Florian, Alexandra Jahnke, Kathrin Nunes-Nesi, Adriano Fernie, Alisdair R Bauwe, Hermann |
description | Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment. |
doi_str_mv | 10.1104/pp.110.166538 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434149</jstor_id><sourcerecordid>41434149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</originalsourceid><addsrcrecordid>eNpVkU1PHSEYhYlpo7fWpcu2s-lylO8BF02MsdVEY9pb14QZ4IqZDwJzTae_vkzGXnVBDuE8nDccADhG8AQhSE9DmPUEcc6I2AMrxAguMaPiHVhBmPdQCHkAPqT0CCFEBNF9cIARhowjsgI_ryYThz9TmOL2SY-2_GXNtvH9plhPabRd4fviPOramyEkn86K2207-tDa4rL_O3U2FW6Ixfhgi7Xu5kPzEbx3uk326FkPwf33y98XV-XN3Y_ri_ObsmFYjCXVTHKKmBG8MRJr7JwVjgtaO8RcRaoGMWG4tMRpY2hNEOJWQodxpWsjJTkE35bcsK07axrbj1G3KkTf6TipQXv11un9g9oMT4rkViiHOaBcApo4pBSt291FUM3dqhBmVUu3mf_8euCO_l9mBr4-Azo1unVR941PLxwRjEpeZe7Twj2mcYg7nyJK8ppf9mXxnR6U3sSccb_G-e8gkqSSApN_YcSWRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Timm, Stefan ; Florian, Alexandra ; Jahnke, Kathrin ; Nunes-Nesi, Adriano ; Fernie, Alisdair R ; Bauwe, Hermann</creator><creatorcontrib>Timm, Stefan ; Florian, Alexandra ; Jahnke, Kathrin ; Nunes-Nesi, Adriano ; Fernie, Alisdair R ; Bauwe, Hermann</creatorcontrib><description>Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.110.166538</identifier><identifier>PMID: 21205613</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino acids ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BIOENERGETICS AND PHOTOSYNTHESIS ; Biological and medical sciences ; Chlorophyll - analysis ; Chlorophylls ; Chloroplasts ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Knockout Techniques ; Glyceric Acids - metabolism ; Glyoxylates ; Glyoxylates - metabolism ; Metabolomics ; Mutagenesis, Insertional ; Oxygen ; Phenotypes ; Photorespiration ; Photosynthesis ; Plant growth ; Plant physiology and development ; Plants ; Pyruvates - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA, Plant - genetics</subject><ispartof>Plant physiology (Bethesda), 2011-02, Vol.155 (2), p.694-705</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</citedby><cites>FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434149$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434149$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23854967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21205613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Florian, Alexandra</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Nunes-Nesi, Adriano</creatorcontrib><creatorcontrib>Fernie, Alisdair R</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><title>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.</description><subject>Amino acids</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BIOENERGETICS AND PHOTOSYNTHESIS</subject><subject>Biological and medical sciences</subject><subject>Chlorophyll - analysis</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Knockout Techniques</subject><subject>Glyceric Acids - metabolism</subject><subject>Glyoxylates</subject><subject>Glyoxylates - metabolism</subject><subject>Metabolomics</subject><subject>Mutagenesis, Insertional</subject><subject>Oxygen</subject><subject>Phenotypes</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Pyruvates - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Plant - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVkU1PHSEYhYlpo7fWpcu2s-lylO8BF02MsdVEY9pb14QZ4IqZDwJzTae_vkzGXnVBDuE8nDccADhG8AQhSE9DmPUEcc6I2AMrxAguMaPiHVhBmPdQCHkAPqT0CCFEBNF9cIARhowjsgI_ryYThz9TmOL2SY-2_GXNtvH9plhPabRd4fviPOramyEkn86K2207-tDa4rL_O3U2FW6Ixfhgi7Xu5kPzEbx3uk326FkPwf33y98XV-XN3Y_ri_ObsmFYjCXVTHKKmBG8MRJr7JwVjgtaO8RcRaoGMWG4tMRpY2hNEOJWQodxpWsjJTkE35bcsK07axrbj1G3KkTf6TipQXv11un9g9oMT4rkViiHOaBcApo4pBSt291FUM3dqhBmVUu3mf_8euCO_l9mBr4-Azo1unVR941PLxwRjEpeZe7Twj2mcYg7nyJK8ppf9mXxnR6U3sSccb_G-e8gkqSSApN_YcSWRA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Timm, Stefan</creator><creator>Florian, Alexandra</creator><creator>Jahnke, Kathrin</creator><creator>Nunes-Nesi, Adriano</creator><creator>Fernie, Alisdair R</creator><creator>Bauwe, Hermann</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</title><author>Timm, Stefan ; Florian, Alexandra ; Jahnke, Kathrin ; Nunes-Nesi, Adriano ; Fernie, Alisdair R ; Bauwe, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BIOENERGETICS AND PHOTOSYNTHESIS</topic><topic>Biological and medical sciences</topic><topic>Chlorophyll - analysis</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Knockout Techniques</topic><topic>Glyceric Acids - metabolism</topic><topic>Glyoxylates</topic><topic>Glyoxylates - metabolism</topic><topic>Metabolomics</topic><topic>Mutagenesis, Insertional</topic><topic>Oxygen</topic><topic>Phenotypes</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Pyruvates - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Plant - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Florian, Alexandra</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Nunes-Nesi, Adriano</creatorcontrib><creatorcontrib>Fernie, Alisdair R</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timm, Stefan</au><au>Florian, Alexandra</au><au>Jahnke, Kathrin</au><au>Nunes-Nesi, Adriano</au><au>Fernie, Alisdair R</au><au>Bauwe, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>155</volume><issue>2</issue><spage>694</spage><epage>705</epage><pages>694-705</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21205613</pmid><doi>10.1104/pp.110.166538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2011-02, Vol.155 (2), p.694-705 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032460 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online |
subjects | Amino acids Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism BIOENERGETICS AND PHOTOSYNTHESIS Biological and medical sciences Chlorophyll - analysis Chlorophylls Chloroplasts Enzymes Fundamental and applied biological sciences. Psychology Gene Deletion Gene Knockout Techniques Glyceric Acids - metabolism Glyoxylates Glyoxylates - metabolism Metabolomics Mutagenesis, Insertional Oxygen Phenotypes Photorespiration Photosynthesis Plant growth Plant physiology and development Plants Pyruvates - metabolism Recombinant Proteins - genetics Recombinant Proteins - metabolism RNA, Plant - genetics |
title | Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxypyruvate-Reducing%20System%20in%20Arabidopsis:%20Multiple%20Enzymes%20for%20the%20Same%20End&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Timm,%20Stefan&rft.date=2011-02-01&rft.volume=155&rft.issue=2&rft.spage=694&rft.epage=705&rft.pages=694-705&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.110.166538&rft_dat=%3Cjstor_pubme%3E41434149%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21205613&rft_jstor_id=41434149&rfr_iscdi=true |