Loading…

Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End

Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is su...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2011-02, Vol.155 (2), p.694-705
Main Authors: Timm, Stefan, Florian, Alexandra, Jahnke, Kathrin, Nunes-Nesi, Adriano, Fernie, Alisdair R, Bauwe, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993
cites cdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993
container_end_page 705
container_issue 2
container_start_page 694
container_title Plant physiology (Bethesda)
container_volume 155
creator Timm, Stefan
Florian, Alexandra
Jahnke, Kathrin
Nunes-Nesi, Adriano
Fernie, Alisdair R
Bauwe, Hermann
description Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.
doi_str_mv 10.1104/pp.110.166538
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41434149</jstor_id><sourcerecordid>41434149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</originalsourceid><addsrcrecordid>eNpVkU1PHSEYhYlpo7fWpcu2s-lylO8BF02MsdVEY9pb14QZ4IqZDwJzTae_vkzGXnVBDuE8nDccADhG8AQhSE9DmPUEcc6I2AMrxAguMaPiHVhBmPdQCHkAPqT0CCFEBNF9cIARhowjsgI_ryYThz9TmOL2SY-2_GXNtvH9plhPabRd4fviPOramyEkn86K2207-tDa4rL_O3U2FW6Ixfhgi7Xu5kPzEbx3uk326FkPwf33y98XV-XN3Y_ri_ObsmFYjCXVTHKKmBG8MRJr7JwVjgtaO8RcRaoGMWG4tMRpY2hNEOJWQodxpWsjJTkE35bcsK07axrbj1G3KkTf6TipQXv11un9g9oMT4rkViiHOaBcApo4pBSt291FUM3dqhBmVUu3mf_8euCO_l9mBr4-Azo1unVR941PLxwRjEpeZe7Twj2mcYg7nyJK8ppf9mXxnR6U3sSccb_G-e8gkqSSApN_YcSWRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Timm, Stefan ; Florian, Alexandra ; Jahnke, Kathrin ; Nunes-Nesi, Adriano ; Fernie, Alisdair R ; Bauwe, Hermann</creator><creatorcontrib>Timm, Stefan ; Florian, Alexandra ; Jahnke, Kathrin ; Nunes-Nesi, Adriano ; Fernie, Alisdair R ; Bauwe, Hermann</creatorcontrib><description>Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.110.166538</identifier><identifier>PMID: 21205613</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Amino acids ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; BIOENERGETICS AND PHOTOSYNTHESIS ; Biological and medical sciences ; Chlorophyll - analysis ; Chlorophylls ; Chloroplasts ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Deletion ; Gene Knockout Techniques ; Glyceric Acids - metabolism ; Glyoxylates ; Glyoxylates - metabolism ; Metabolomics ; Mutagenesis, Insertional ; Oxygen ; Phenotypes ; Photorespiration ; Photosynthesis ; Plant growth ; Plant physiology and development ; Plants ; Pyruvates - metabolism ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; RNA, Plant - genetics</subject><ispartof>Plant physiology (Bethesda), 2011-02, Vol.155 (2), p.694-705</ispartof><rights>2011 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Society of Plant Biologists 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</citedby><cites>FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41434149$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41434149$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23854967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21205613$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Florian, Alexandra</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Nunes-Nesi, Adriano</creatorcontrib><creatorcontrib>Fernie, Alisdair R</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><title>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.</description><subject>Amino acids</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>BIOENERGETICS AND PHOTOSYNTHESIS</subject><subject>Biological and medical sciences</subject><subject>Chlorophyll - analysis</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Deletion</subject><subject>Gene Knockout Techniques</subject><subject>Glyceric Acids - metabolism</subject><subject>Glyoxylates</subject><subject>Glyoxylates - metabolism</subject><subject>Metabolomics</subject><subject>Mutagenesis, Insertional</subject><subject>Oxygen</subject><subject>Phenotypes</subject><subject>Photorespiration</subject><subject>Photosynthesis</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Pyruvates - metabolism</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA, Plant - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpVkU1PHSEYhYlpo7fWpcu2s-lylO8BF02MsdVEY9pb14QZ4IqZDwJzTae_vkzGXnVBDuE8nDccADhG8AQhSE9DmPUEcc6I2AMrxAguMaPiHVhBmPdQCHkAPqT0CCFEBNF9cIARhowjsgI_ryYThz9TmOL2SY-2_GXNtvH9plhPabRd4fviPOramyEkn86K2207-tDa4rL_O3U2FW6Ixfhgi7Xu5kPzEbx3uk326FkPwf33y98XV-XN3Y_ri_ObsmFYjCXVTHKKmBG8MRJr7JwVjgtaO8RcRaoGMWG4tMRpY2hNEOJWQodxpWsjJTkE35bcsK07axrbj1G3KkTf6TipQXv11un9g9oMT4rkViiHOaBcApo4pBSt291FUM3dqhBmVUu3mf_8euCO_l9mBr4-Azo1unVR941PLxwRjEpeZe7Twj2mcYg7nyJK8ppf9mXxnR6U3sSccb_G-e8gkqSSApN_YcSWRA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Timm, Stefan</creator><creator>Florian, Alexandra</creator><creator>Jahnke, Kathrin</creator><creator>Nunes-Nesi, Adriano</creator><creator>Fernie, Alisdair R</creator><creator>Bauwe, Hermann</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</title><author>Timm, Stefan ; Florian, Alexandra ; Jahnke, Kathrin ; Nunes-Nesi, Adriano ; Fernie, Alisdair R ; Bauwe, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino acids</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>BIOENERGETICS AND PHOTOSYNTHESIS</topic><topic>Biological and medical sciences</topic><topic>Chlorophyll - analysis</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Deletion</topic><topic>Gene Knockout Techniques</topic><topic>Glyceric Acids - metabolism</topic><topic>Glyoxylates</topic><topic>Glyoxylates - metabolism</topic><topic>Metabolomics</topic><topic>Mutagenesis, Insertional</topic><topic>Oxygen</topic><topic>Phenotypes</topic><topic>Photorespiration</topic><topic>Photosynthesis</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Pyruvates - metabolism</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA, Plant - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Timm, Stefan</creatorcontrib><creatorcontrib>Florian, Alexandra</creatorcontrib><creatorcontrib>Jahnke, Kathrin</creatorcontrib><creatorcontrib>Nunes-Nesi, Adriano</creatorcontrib><creatorcontrib>Fernie, Alisdair R</creatorcontrib><creatorcontrib>Bauwe, Hermann</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Timm, Stefan</au><au>Florian, Alexandra</au><au>Jahnke, Kathrin</au><au>Nunes-Nesi, Adriano</au><au>Fernie, Alisdair R</au><au>Bauwe, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>155</volume><issue>2</issue><spage>694</spage><epage>705</epage><pages>694-705</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO₂ assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>21205613</pmid><doi>10.1104/pp.110.166538</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2011-02, Vol.155 (2), p.694-705
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3032460
source JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online
subjects Amino acids
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
BIOENERGETICS AND PHOTOSYNTHESIS
Biological and medical sciences
Chlorophyll - analysis
Chlorophylls
Chloroplasts
Enzymes
Fundamental and applied biological sciences. Psychology
Gene Deletion
Gene Knockout Techniques
Glyceric Acids - metabolism
Glyoxylates
Glyoxylates - metabolism
Metabolomics
Mutagenesis, Insertional
Oxygen
Phenotypes
Photorespiration
Photosynthesis
Plant growth
Plant physiology and development
Plants
Pyruvates - metabolism
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
RNA, Plant - genetics
title Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A05%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydroxypyruvate-Reducing%20System%20in%20Arabidopsis:%20Multiple%20Enzymes%20for%20the%20Same%20End&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Timm,%20Stefan&rft.date=2011-02-01&rft.volume=155&rft.issue=2&rft.spage=694&rft.epage=705&rft.pages=694-705&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.110.166538&rft_dat=%3Cjstor_pubme%3E41434149%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-4a596415d86cd92a2ffe8f684bf15f737c158d69e3fadd4b3116e90f227abd993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21205613&rft_jstor_id=41434149&rfr_iscdi=true