Loading…
Surgical Protocol Involving the Infusion of Paramagnetic Microparticles for Preferential Incorporation Within Porcine Islets
Abstract Introduction Despite significant advances, widespread applicability of islet cell transplantation remains elusive. Refinement of current islet isolation protocols may improve transplant outcomes. Islet purification by magnetic separation has shown early promise. However, surgical protocols...
Saved in:
Published in: | Transplantation proceedings 2010-12, Vol.42 (10), p.4209-4212 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Introduction Despite significant advances, widespread applicability of islet cell transplantation remains elusive. Refinement of current islet isolation protocols may improve transplant outcomes. Islet purification by magnetic separation has shown early promise. However, surgical protocols must be optimized to maximize the incorporation of paramagnetic microparticles (MP) within a greater number of islets. This study explores the impact of MP concentration and infusion method on optimizing MP incorporation within islets. Methods Five porcine pancreata were procured from donors after cardiac death. Splenic lobes were isolated and infused with varying concentrations of MP (8, 16, and 32 × 108 MP/L of cold preservation solution) and using one of two delivery techniques (hanging bag versus hand-syringe). After procurement and infusion, pancreata were stored at 0°C to 4°C during transportation (less than 1 hour), fixed in 10% buffered formalin, and examined by standard magnetic resonance imaging (MRI) and histopathology. Results T2*-weighted MRI showed homogeneous distribution of MP in all experimental splenic lobes. In addition, histologic analysis confirmed that MP were primarily located within the microvasculature of islets (82% to 85%), with few MP present in acinar tissue (15% to 18%), with an average of five to seven MP per islet (within a 5-μm thick section). The highest MP incorporation was achieved at a concentration of 16 × 108 MP/L using the hand-syringe technique. Conclusion This preliminary study suggests that optimization of a surgical protocol, MP concentrations, and applied infusion pressures may enable more uniform distribution of MP in the porcine pancreas and better control of MP incorporation within islets. These results may have implications in maximizing the efficacy of islet purification by magnetic separation. |
---|---|
ISSN: | 0041-1345 1873-2623 |
DOI: | 10.1016/j.transproceed.2010.09.138 |