Loading…

Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)

Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein c...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-02, Vol.108 (7), p.2999-3004
Main Authors: Heinrich, Sven U, Lindquist, Susan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643
cites cdi_FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643
container_end_page 3004
container_issue 7
container_start_page 2999
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Heinrich, Sven U
Lindquist, Susan
description Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change in CPEB activity: a robust "protein-only" biochemical memory. To investigate, we take advantage of yeast cells wherein the neuronal CPEB of Aplysia is expressed in the absence of any neuronal factors and can stably adopt either an active or an inactive state. Reminiscent of well-characterized yeast prions, we find that CPEB can adopt several distinct activity states or "strains." These states are acquired at a much higher spontaneous rate than is typical of yeast prions, but they are extremely stable--perpetuating for years--and have all of the non-Mendelian genetic characteristics of bona fide yeast prions. CPEB levels are too low to allow direct physical characterization, but CPEB strains convert a fusion protein, which shares only the prion-like domain of CPEB, into amyloid in a strain-specific manner. Lysates of CPEB strains seed the purified prion domain to adopt the amyloid conformation with strain-specific efficiencies. Amyloid conformers generated by spontaneous assembly of the purified prion domain (and a more biochemically tractable derivative) transformed cells with inactive CPEB into the full range of distinct CPEB strains. Thus, CPEB employs a prion mechanism to create stable, finely tuned self-perpetuating biochemical memories. These biochemical memories might be used in the local homeostatic maintenance of long-term learning-related changes in synaptic morphology and function.
doi_str_mv 10.1073/pnas.1019368108
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41002251</jstor_id><sourcerecordid>41002251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEotPCmhVgsQEWodePPLxBKqPykCpRCbq2HMeZ8cixUzuplF_Sv4vDlGlhw8qWznePj69Olr3A8AFDRU8HJ2O6YU7LGkP9KFth4DgvGYfH2QqAVHnNCDvKjmPcAQAvaniaHRFMKqCUrrLby-BHbVzunZ1Rr9VWOhN7ZFw7KR1R1LbLBx0GPU5yNG6DFmKTFOPQuNVIqtHcmHFGvkNOT8E7adHZYOdoJFLz6AcrY28UGrydZavdbJOPd0hb3Ws3oiY9tfgO-yDo3fry_NP7Z9mTTtqon9-dJ9nV5_Of66_5xfcv39ZnF7kqCIy54g0UddtozjUD3vGiYYAVUFwq0rBCUdyxqmtaqmvJSd3yTgFuW0nrSvOS0ZPs4953mJpetyolCtKKIZhehll4acTfijNbsfE3ggJLC18M3t4ZBH896TiK3kSlrZVO-ykKDhUu6grK_5J1QTgwwnki3_xD7vwU0mJ_QxWDkkGCTveQCj7GoLtDaAxiKYdYyiHuy5EmXj3864H_04YHwDJ5b1eLSqRcS7CXe2AXRx8ORNoEEFLgpL_e6530Qm6CieLqBwFMUwhWsrKkvwCTpNZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852740640</pqid></control><display><type>article</type><title>Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)</title><source>PubMed Central</source><source>JSTOR</source><creator>Heinrich, Sven U ; Lindquist, Susan</creator><creatorcontrib>Heinrich, Sven U ; Lindquist, Susan</creatorcontrib><description>Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change in CPEB activity: a robust "protein-only" biochemical memory. To investigate, we take advantage of yeast cells wherein the neuronal CPEB of Aplysia is expressed in the absence of any neuronal factors and can stably adopt either an active or an inactive state. Reminiscent of well-characterized yeast prions, we find that CPEB can adopt several distinct activity states or "strains." These states are acquired at a much higher spontaneous rate than is typical of yeast prions, but they are extremely stable--perpetuating for years--and have all of the non-Mendelian genetic characteristics of bona fide yeast prions. CPEB levels are too low to allow direct physical characterization, but CPEB strains convert a fusion protein, which shares only the prion-like domain of CPEB, into amyloid in a strain-specific manner. Lysates of CPEB strains seed the purified prion domain to adopt the amyloid conformation with strain-specific efficiencies. Amyloid conformers generated by spontaneous assembly of the purified prion domain (and a more biochemically tractable derivative) transformed cells with inactive CPEB into the full range of distinct CPEB strains. Thus, CPEB employs a prion mechanism to create stable, finely tuned self-perpetuating biochemical memories. These biochemical memories might be used in the local homeostatic maintenance of long-term learning-related changes in synaptic morphology and function.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1019368108</identifier><identifier>PMID: 21270333</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aggregation ; Amyloid ; Amyloid - metabolism ; Amyloids ; Animals ; Aplysia ; Aplysia - metabolism ; Aplysia - physiology ; Base Sequence ; beta -Amyloid ; Binding sites ; Biological Sciences ; Cells ; Fusion protein ; Genetics ; Homeostasis ; Learning ; Memory ; Memory - physiology ; Messenger RNA ; Microscopy, Electron, Transmission ; Models, Biological ; Molecular Sequence Data ; mRNA Cleavage and Polyadenylation Factors - genetics ; mRNA Cleavage and Polyadenylation Factors - metabolism ; Neurons ; Neurons - metabolism ; Phenotypes ; Polyadenylation ; Prion protein ; Prions ; Protein Conformation ; Protein structure ; Proteins ; Seeds ; Sequence Analysis, DNA ; Synapses ; Synapses - metabolism ; Synapses - physiology ; Transformed cells ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-02, Vol.108 (7), p.2999-3004</ispartof><rights>Copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 15, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643</citedby><cites>FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41002251$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41002251$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21270333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinrich, Sven U</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><title>Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change in CPEB activity: a robust "protein-only" biochemical memory. To investigate, we take advantage of yeast cells wherein the neuronal CPEB of Aplysia is expressed in the absence of any neuronal factors and can stably adopt either an active or an inactive state. Reminiscent of well-characterized yeast prions, we find that CPEB can adopt several distinct activity states or "strains." These states are acquired at a much higher spontaneous rate than is typical of yeast prions, but they are extremely stable--perpetuating for years--and have all of the non-Mendelian genetic characteristics of bona fide yeast prions. CPEB levels are too low to allow direct physical characterization, but CPEB strains convert a fusion protein, which shares only the prion-like domain of CPEB, into amyloid in a strain-specific manner. Lysates of CPEB strains seed the purified prion domain to adopt the amyloid conformation with strain-specific efficiencies. Amyloid conformers generated by spontaneous assembly of the purified prion domain (and a more biochemically tractable derivative) transformed cells with inactive CPEB into the full range of distinct CPEB strains. Thus, CPEB employs a prion mechanism to create stable, finely tuned self-perpetuating biochemical memories. These biochemical memories might be used in the local homeostatic maintenance of long-term learning-related changes in synaptic morphology and function.</description><subject>Aggregation</subject><subject>Amyloid</subject><subject>Amyloid - metabolism</subject><subject>Amyloids</subject><subject>Animals</subject><subject>Aplysia</subject><subject>Aplysia - metabolism</subject><subject>Aplysia - physiology</subject><subject>Base Sequence</subject><subject>beta -Amyloid</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Fusion protein</subject><subject>Genetics</subject><subject>Homeostasis</subject><subject>Learning</subject><subject>Memory</subject><subject>Memory - physiology</subject><subject>Messenger RNA</subject><subject>Microscopy, Electron, Transmission</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>mRNA Cleavage and Polyadenylation Factors - genetics</subject><subject>mRNA Cleavage and Polyadenylation Factors - metabolism</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Phenotypes</subject><subject>Polyadenylation</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Protein Conformation</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Seeds</subject><subject>Sequence Analysis, DNA</subject><subject>Synapses</subject><subject>Synapses - metabolism</subject><subject>Synapses - physiology</subject><subject>Transformed cells</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkktv1DAUhSMEotPCmhVgsQEWodePPLxBKqPykCpRCbq2HMeZ8cixUzuplF_Sv4vDlGlhw8qWznePj69Olr3A8AFDRU8HJ2O6YU7LGkP9KFth4DgvGYfH2QqAVHnNCDvKjmPcAQAvaniaHRFMKqCUrrLby-BHbVzunZ1Rr9VWOhN7ZFw7KR1R1LbLBx0GPU5yNG6DFmKTFOPQuNVIqtHcmHFGvkNOT8E7adHZYOdoJFLz6AcrY28UGrydZavdbJOPd0hb3Ws3oiY9tfgO-yDo3fry_NP7Z9mTTtqon9-dJ9nV5_Of66_5xfcv39ZnF7kqCIy54g0UddtozjUD3vGiYYAVUFwq0rBCUdyxqmtaqmvJSd3yTgFuW0nrSvOS0ZPs4953mJpetyolCtKKIZhehll4acTfijNbsfE3ggJLC18M3t4ZBH896TiK3kSlrZVO-ykKDhUu6grK_5J1QTgwwnki3_xD7vwU0mJ_QxWDkkGCTveQCj7GoLtDaAxiKYdYyiHuy5EmXj3864H_04YHwDJ5b1eLSqRcS7CXe2AXRx8ORNoEEFLgpL_e6530Qm6CieLqBwFMUwhWsrKkvwCTpNZM</recordid><startdate>20110215</startdate><enddate>20110215</enddate><creator>Heinrich, Sven U</creator><creator>Lindquist, Susan</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110215</creationdate><title>Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)</title><author>Heinrich, Sven U ; Lindquist, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aggregation</topic><topic>Amyloid</topic><topic>Amyloid - metabolism</topic><topic>Amyloids</topic><topic>Animals</topic><topic>Aplysia</topic><topic>Aplysia - metabolism</topic><topic>Aplysia - physiology</topic><topic>Base Sequence</topic><topic>beta -Amyloid</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Fusion protein</topic><topic>Genetics</topic><topic>Homeostasis</topic><topic>Learning</topic><topic>Memory</topic><topic>Memory - physiology</topic><topic>Messenger RNA</topic><topic>Microscopy, Electron, Transmission</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>mRNA Cleavage and Polyadenylation Factors - genetics</topic><topic>mRNA Cleavage and Polyadenylation Factors - metabolism</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Phenotypes</topic><topic>Polyadenylation</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Protein Conformation</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Seeds</topic><topic>Sequence Analysis, DNA</topic><topic>Synapses</topic><topic>Synapses - metabolism</topic><topic>Synapses - physiology</topic><topic>Transformed cells</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Sven U</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Sven U</au><au>Lindquist, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-02-15</date><risdate>2011</risdate><volume>108</volume><issue>7</issue><spage>2999</spage><epage>3004</epage><pages>2999-3004</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Neuronal cytoplasmic polyadenylation element binding protein (CPEB) plays a critical role in maintaining the functional and morphological long-lasting synaptic changes that underlie learning and memory. It can undergo a prion switch, but it remains unclear if this self-templating change in protein conformation is alone sufficient to create a stable change in CPEB activity: a robust "protein-only" biochemical memory. To investigate, we take advantage of yeast cells wherein the neuronal CPEB of Aplysia is expressed in the absence of any neuronal factors and can stably adopt either an active or an inactive state. Reminiscent of well-characterized yeast prions, we find that CPEB can adopt several distinct activity states or "strains." These states are acquired at a much higher spontaneous rate than is typical of yeast prions, but they are extremely stable--perpetuating for years--and have all of the non-Mendelian genetic characteristics of bona fide yeast prions. CPEB levels are too low to allow direct physical characterization, but CPEB strains convert a fusion protein, which shares only the prion-like domain of CPEB, into amyloid in a strain-specific manner. Lysates of CPEB strains seed the purified prion domain to adopt the amyloid conformation with strain-specific efficiencies. Amyloid conformers generated by spontaneous assembly of the purified prion domain (and a more biochemically tractable derivative) transformed cells with inactive CPEB into the full range of distinct CPEB strains. Thus, CPEB employs a prion mechanism to create stable, finely tuned self-perpetuating biochemical memories. These biochemical memories might be used in the local homeostatic maintenance of long-term learning-related changes in synaptic morphology and function.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21270333</pmid><doi>10.1073/pnas.1019368108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-02, Vol.108 (7), p.2999-3004
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3041084
source PubMed Central; JSTOR
subjects Aggregation
Amyloid
Amyloid - metabolism
Amyloids
Animals
Aplysia
Aplysia - metabolism
Aplysia - physiology
Base Sequence
beta -Amyloid
Binding sites
Biological Sciences
Cells
Fusion protein
Genetics
Homeostasis
Learning
Memory
Memory - physiology
Messenger RNA
Microscopy, Electron, Transmission
Models, Biological
Molecular Sequence Data
mRNA Cleavage and Polyadenylation Factors - genetics
mRNA Cleavage and Polyadenylation Factors - metabolism
Neurons
Neurons - metabolism
Phenotypes
Polyadenylation
Prion protein
Prions
Protein Conformation
Protein structure
Proteins
Seeds
Sequence Analysis, DNA
Synapses
Synapses - metabolism
Synapses - physiology
Transformed cells
Yeast
Yeasts
title Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein-only%20mechanism%20induces%20self-perpetuating%20changes%20in%20the%20activity%20of%20neuronal%20Aplysia%20cytoplasmic%20polyadenylation%20element%20binding%20protein%20(CPEB)&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Heinrich,%20Sven%20U&rft.date=2011-02-15&rft.volume=108&rft.issue=7&rft.spage=2999&rft.epage=3004&rft.pages=2999-3004&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1019368108&rft_dat=%3Cjstor_pubme%3E41002251%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-c9b058dbe99e409f95b401c0316c2b45c31f47fbd3e8a928d9fc01dda387e9643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=852740640&rft_id=info:pmid/21270333&rft_jstor_id=41002251&rfr_iscdi=true