Loading…
Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects
Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), c...
Saved in:
Published in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2011-02, Vol.36 (3), p.692-700 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33 |
container_end_page | 700 |
container_issue | 3 |
container_start_page | 692 |
container_title | Neuropsychopharmacology (New York, N.Y.) |
container_volume | 36 |
creator | Khokhar, Jibran Y Tyndale, Rachel F |
description | Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (
r
=0.76,
P
=0.0009), but not plasma (
r
=0.24,
P
=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain. |
doi_str_mv | 10.1038/npp.2010.202 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3055692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236772101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</originalsourceid><addsrcrecordid>eNp10Utv1DAUBWALgejQsmONLKSKDWn9SGKHBVI7lIfUioqHVFaWx7mecZWxUzsp4t_jMNMpILGJE_nzybUOQs8oOaKEy2Pf90eM5C9G2AM0o6IkRc3Lq4doRmTDC8r51R56ktI1IbQStXyM9hilRHBKZmh8G8clvoBBL0Ln0hr_cMPKeTysAJ9Gnd_mK-2XkPBv-BlSH3yC1_gLdGAGdwv4QnvXj50eXPA42Ltj3y_ZKT7pBogJX8bQBxs6fGZtPpUO0COruwRPt-s--vbu7Ov8Q3H-6f3H-cl5YWpCh0IwyxrQnBpOLZeisRqYJKVsq4qAlaWR0LZ2oau2hFoCZVaUojWLhtiGtJzvozeb3H5crKE14IeoO9VHt9bxpwraqb93vFupZbhVnFRV3bAc8HIbEMPNCGlQa5cMdJ32EMakGiJoKRsms3zxj7wOY_T5dkpyUbNKyCnu1QaZGFKKYHejUKKmNlVuU01t5sfEn_85_g7f1ZfB4RboZHRno_bGpXvHG0rrcnLFxqW8lduM98P958d4470exgi7wIwmM5Ffo7bDNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837625782</pqid></control><display><type>article</type><title>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</title><source>NCBI_PubMed Central(免费)</source><creator>Khokhar, Jibran Y ; Tyndale, Rachel F</creator><creatorcontrib>Khokhar, Jibran Y ; Tyndale, Rachel F</creatorcontrib><description>Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (
r
=0.76,
P
=0.0009), but not plasma (
r
=0.24,
P
=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/npp.2010.202</identifier><identifier>PMID: 21107310</identifier><identifier>CODEN: NEROEW</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>631/378/1385/519 ; 631/92/436/1729 ; 631/92/436/2388 ; 692/698/1688/1366/64 ; Analysis of Variance ; Anesthesia ; Anesthetics ; Anesthetics, Intravenous - pharmacology ; Animals ; Behavioral Sciences ; Biological and medical sciences ; Biological Psychology ; Brain ; Brain - drug effects ; Central nervous system ; Chlorisondamine - pharmacology ; Cytochrome ; Cytochrome P-450 CYP2B1 - metabolism ; Cytochrome P450 ; Data processing ; Dose-Response Relationship, Drug ; Drug abuse ; Drug dosages ; Drug Interactions ; Drug metabolism ; Enzyme Inhibitors - pharmacology ; Enzymes ; Inactivation, Metabolic - physiology ; Injections, Intraventricular ; Liver ; Male ; MDMA ; Medical sciences ; Medicine ; Medicine & Public Health ; Metabolism ; Metabolites ; Methoxsalen - pharmacokinetics ; Neurosciences ; Neurotoxins ; Neurotransmitters ; Nicotine ; Nicotine - metabolism ; Nicotine - pharmacology ; Nicotinic Agonists - pharmacology ; Nicotinic Antagonists - pharmacology ; Original ; original-article ; Pharmacotherapy ; Plasma ; Propofol ; Propofol - metabolism ; Propofol - pharmacology ; Psychiatry ; Rats ; Rats, Wistar ; Serotonin ; Sleep ; Sleep - drug effects ; Time Factors ; Toxicology ; Tritium - pharmacokinetics</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2011-02, Vol.36 (3), p.692-700</ispartof><rights>American College of Neuropsychopharmacology 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Feb 2011</rights><rights>Copyright © 2011 American College of Neuropsychopharmacology 2011 American College of Neuropsychopharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</citedby><cites>FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055692/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055692/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23911640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21107310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khokhar, Jibran Y</creatorcontrib><creatorcontrib>Tyndale, Rachel F</creatorcontrib><title>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacol</addtitle><addtitle>Neuropsychopharmacology</addtitle><description>Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (
r
=0.76,
P
=0.0009), but not plasma (
r
=0.24,
P
=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.</description><subject>631/378/1385/519</subject><subject>631/92/436/1729</subject><subject>631/92/436/2388</subject><subject>692/698/1688/1366/64</subject><subject>Analysis of Variance</subject><subject>Anesthesia</subject><subject>Anesthetics</subject><subject>Anesthetics, Intravenous - pharmacology</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological and medical sciences</subject><subject>Biological Psychology</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Central nervous system</subject><subject>Chlorisondamine - pharmacology</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 CYP2B1 - metabolism</subject><subject>Cytochrome P450</subject><subject>Data processing</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug abuse</subject><subject>Drug dosages</subject><subject>Drug Interactions</subject><subject>Drug metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Inactivation, Metabolic - physiology</subject><subject>Injections, Intraventricular</subject><subject>Liver</subject><subject>Male</subject><subject>MDMA</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methoxsalen - pharmacokinetics</subject><subject>Neurosciences</subject><subject>Neurotoxins</subject><subject>Neurotransmitters</subject><subject>Nicotine</subject><subject>Nicotine - metabolism</subject><subject>Nicotine - pharmacology</subject><subject>Nicotinic Agonists - pharmacology</subject><subject>Nicotinic Antagonists - pharmacology</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Plasma</subject><subject>Propofol</subject><subject>Propofol - metabolism</subject><subject>Propofol - pharmacology</subject><subject>Psychiatry</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Serotonin</subject><subject>Sleep</subject><subject>Sleep - drug effects</subject><subject>Time Factors</subject><subject>Toxicology</subject><subject>Tritium - pharmacokinetics</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10Utv1DAUBWALgejQsmONLKSKDWn9SGKHBVI7lIfUioqHVFaWx7mecZWxUzsp4t_jMNMpILGJE_nzybUOQs8oOaKEy2Pf90eM5C9G2AM0o6IkRc3Lq4doRmTDC8r51R56ktI1IbQStXyM9hilRHBKZmh8G8clvoBBL0Ln0hr_cMPKeTysAJ9Gnd_mK-2XkPBv-BlSH3yC1_gLdGAGdwv4QnvXj50eXPA42Ltj3y_ZKT7pBogJX8bQBxs6fGZtPpUO0COruwRPt-s--vbu7Ov8Q3H-6f3H-cl5YWpCh0IwyxrQnBpOLZeisRqYJKVsq4qAlaWR0LZ2oau2hFoCZVaUojWLhtiGtJzvozeb3H5crKE14IeoO9VHt9bxpwraqb93vFupZbhVnFRV3bAc8HIbEMPNCGlQa5cMdJ32EMakGiJoKRsms3zxj7wOY_T5dkpyUbNKyCnu1QaZGFKKYHejUKKmNlVuU01t5sfEn_85_g7f1ZfB4RboZHRno_bGpXvHG0rrcnLFxqW8lduM98P958d4470exgi7wIwmM5Ffo7bDNg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Khokhar, Jibran Y</creator><creator>Tyndale, Rachel F</creator><general>Springer International Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</title><author>Khokhar, Jibran Y ; Tyndale, Rachel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/378/1385/519</topic><topic>631/92/436/1729</topic><topic>631/92/436/2388</topic><topic>692/698/1688/1366/64</topic><topic>Analysis of Variance</topic><topic>Anesthesia</topic><topic>Anesthetics</topic><topic>Anesthetics, Intravenous - pharmacology</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological and medical sciences</topic><topic>Biological Psychology</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Central nervous system</topic><topic>Chlorisondamine - pharmacology</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 CYP2B1 - metabolism</topic><topic>Cytochrome P450</topic><topic>Data processing</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug abuse</topic><topic>Drug dosages</topic><topic>Drug Interactions</topic><topic>Drug metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Inactivation, Metabolic - physiology</topic><topic>Injections, Intraventricular</topic><topic>Liver</topic><topic>Male</topic><topic>MDMA</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methoxsalen - pharmacokinetics</topic><topic>Neurosciences</topic><topic>Neurotoxins</topic><topic>Neurotransmitters</topic><topic>Nicotine</topic><topic>Nicotine - metabolism</topic><topic>Nicotine - pharmacology</topic><topic>Nicotinic Agonists - pharmacology</topic><topic>Nicotinic Antagonists - pharmacology</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Plasma</topic><topic>Propofol</topic><topic>Propofol - metabolism</topic><topic>Propofol - pharmacology</topic><topic>Psychiatry</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Serotonin</topic><topic>Sleep</topic><topic>Sleep - drug effects</topic><topic>Time Factors</topic><topic>Toxicology</topic><topic>Tritium - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khokhar, Jibran Y</creatorcontrib><creatorcontrib>Tyndale, Rachel F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khokhar, Jibran Y</au><au>Tyndale, Rachel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><stitle>Neuropsychopharmacol</stitle><addtitle>Neuropsychopharmacology</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>36</volume><issue>3</issue><spage>692</spage><epage>700</epage><pages>692-700</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><coden>NEROEW</coden><abstract>Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain (
r
=0.76,
P
=0.0009), but not plasma (
r
=0.24,
P
=0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>21107310</pmid><doi>10.1038/npp.2010.202</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-133X |
ispartof | Neuropsychopharmacology (New York, N.Y.), 2011-02, Vol.36 (3), p.692-700 |
issn | 0893-133X 1740-634X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3055692 |
source | NCBI_PubMed Central(免费) |
subjects | 631/378/1385/519 631/92/436/1729 631/92/436/2388 692/698/1688/1366/64 Analysis of Variance Anesthesia Anesthetics Anesthetics, Intravenous - pharmacology Animals Behavioral Sciences Biological and medical sciences Biological Psychology Brain Brain - drug effects Central nervous system Chlorisondamine - pharmacology Cytochrome Cytochrome P-450 CYP2B1 - metabolism Cytochrome P450 Data processing Dose-Response Relationship, Drug Drug abuse Drug dosages Drug Interactions Drug metabolism Enzyme Inhibitors - pharmacology Enzymes Inactivation, Metabolic - physiology Injections, Intraventricular Liver Male MDMA Medical sciences Medicine Medicine & Public Health Metabolism Metabolites Methoxsalen - pharmacokinetics Neurosciences Neurotoxins Neurotransmitters Nicotine Nicotine - metabolism Nicotine - pharmacology Nicotinic Agonists - pharmacology Nicotinic Antagonists - pharmacology Original original-article Pharmacotherapy Plasma Propofol Propofol - metabolism Propofol - pharmacology Psychiatry Rats Rats, Wistar Serotonin Sleep Sleep - drug effects Time Factors Toxicology Tritium - pharmacokinetics |
title | Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20Metabolism%20within%20the%20Brain%20Changes%20Drug%20Response:%20Selective%20Manipulation%20of%20Brain%20CYP2B%20Alters%20Propofol%20Effects&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Khokhar,%20Jibran%20Y&rft.date=2011-02-01&rft.volume=36&rft.issue=3&rft.spage=692&rft.epage=700&rft.pages=692-700&rft.issn=0893-133X&rft.eissn=1740-634X&rft.coden=NEROEW&rft_id=info:doi/10.1038/npp.2010.202&rft_dat=%3Cproquest_pubme%3E2236772101%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=837625782&rft_id=info:pmid/21107310&rfr_iscdi=true |