Loading…

Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects

Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), c...

Full description

Saved in:
Bibliographic Details
Published in:Neuropsychopharmacology (New York, N.Y.) N.Y.), 2011-02, Vol.36 (3), p.692-700
Main Authors: Khokhar, Jibran Y, Tyndale, Rachel F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33
cites cdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33
container_end_page 700
container_issue 3
container_start_page 692
container_title Neuropsychopharmacology (New York, N.Y.)
container_volume 36
creator Khokhar, Jibran Y
Tyndale, Rachel F
description Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain ( r =0.76, P =0.0009), but not plasma ( r =0.24, P =0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.
doi_str_mv 10.1038/npp.2010.202
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3055692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236772101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</originalsourceid><addsrcrecordid>eNp10Utv1DAUBWALgejQsmONLKSKDWn9SGKHBVI7lIfUioqHVFaWx7mecZWxUzsp4t_jMNMpILGJE_nzybUOQs8oOaKEy2Pf90eM5C9G2AM0o6IkRc3Lq4doRmTDC8r51R56ktI1IbQStXyM9hilRHBKZmh8G8clvoBBL0Ln0hr_cMPKeTysAJ9Gnd_mK-2XkPBv-BlSH3yC1_gLdGAGdwv4QnvXj50eXPA42Ltj3y_ZKT7pBogJX8bQBxs6fGZtPpUO0COruwRPt-s--vbu7Ov8Q3H-6f3H-cl5YWpCh0IwyxrQnBpOLZeisRqYJKVsq4qAlaWR0LZ2oau2hFoCZVaUojWLhtiGtJzvozeb3H5crKE14IeoO9VHt9bxpwraqb93vFupZbhVnFRV3bAc8HIbEMPNCGlQa5cMdJ32EMakGiJoKRsms3zxj7wOY_T5dkpyUbNKyCnu1QaZGFKKYHejUKKmNlVuU01t5sfEn_85_g7f1ZfB4RboZHRno_bGpXvHG0rrcnLFxqW8lduM98P958d4470exgi7wIwmM5Ffo7bDNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>837625782</pqid></control><display><type>article</type><title>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</title><source>NCBI_PubMed Central(免费)</source><creator>Khokhar, Jibran Y ; Tyndale, Rachel F</creator><creatorcontrib>Khokhar, Jibran Y ; Tyndale, Rachel F</creatorcontrib><description>Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain ( r =0.76, P =0.0009), but not plasma ( r =0.24, P =0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/npp.2010.202</identifier><identifier>PMID: 21107310</identifier><identifier>CODEN: NEROEW</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>631/378/1385/519 ; 631/92/436/1729 ; 631/92/436/2388 ; 692/698/1688/1366/64 ; Analysis of Variance ; Anesthesia ; Anesthetics ; Anesthetics, Intravenous - pharmacology ; Animals ; Behavioral Sciences ; Biological and medical sciences ; Biological Psychology ; Brain ; Brain - drug effects ; Central nervous system ; Chlorisondamine - pharmacology ; Cytochrome ; Cytochrome P-450 CYP2B1 - metabolism ; Cytochrome P450 ; Data processing ; Dose-Response Relationship, Drug ; Drug abuse ; Drug dosages ; Drug Interactions ; Drug metabolism ; Enzyme Inhibitors - pharmacology ; Enzymes ; Inactivation, Metabolic - physiology ; Injections, Intraventricular ; Liver ; Male ; MDMA ; Medical sciences ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Metabolites ; Methoxsalen - pharmacokinetics ; Neurosciences ; Neurotoxins ; Neurotransmitters ; Nicotine ; Nicotine - metabolism ; Nicotine - pharmacology ; Nicotinic Agonists - pharmacology ; Nicotinic Antagonists - pharmacology ; Original ; original-article ; Pharmacotherapy ; Plasma ; Propofol ; Propofol - metabolism ; Propofol - pharmacology ; Psychiatry ; Rats ; Rats, Wistar ; Serotonin ; Sleep ; Sleep - drug effects ; Time Factors ; Toxicology ; Tritium - pharmacokinetics</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2011-02, Vol.36 (3), p.692-700</ispartof><rights>American College of Neuropsychopharmacology 2011</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Nature Publishing Group Feb 2011</rights><rights>Copyright © 2011 American College of Neuropsychopharmacology 2011 American College of Neuropsychopharmacology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</citedby><cites>FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055692/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055692/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23911640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21107310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khokhar, Jibran Y</creatorcontrib><creatorcontrib>Tyndale, Rachel F</creatorcontrib><title>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacol</addtitle><addtitle>Neuropsychopharmacology</addtitle><description>Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain ( r =0.76, P =0.0009), but not plasma ( r =0.24, P =0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.</description><subject>631/378/1385/519</subject><subject>631/92/436/1729</subject><subject>631/92/436/2388</subject><subject>692/698/1688/1366/64</subject><subject>Analysis of Variance</subject><subject>Anesthesia</subject><subject>Anesthetics</subject><subject>Anesthetics, Intravenous - pharmacology</subject><subject>Animals</subject><subject>Behavioral Sciences</subject><subject>Biological and medical sciences</subject><subject>Biological Psychology</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Central nervous system</subject><subject>Chlorisondamine - pharmacology</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 CYP2B1 - metabolism</subject><subject>Cytochrome P450</subject><subject>Data processing</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug abuse</subject><subject>Drug dosages</subject><subject>Drug Interactions</subject><subject>Drug metabolism</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Inactivation, Metabolic - physiology</subject><subject>Injections, Intraventricular</subject><subject>Liver</subject><subject>Male</subject><subject>MDMA</subject><subject>Medical sciences</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Methoxsalen - pharmacokinetics</subject><subject>Neurosciences</subject><subject>Neurotoxins</subject><subject>Neurotransmitters</subject><subject>Nicotine</subject><subject>Nicotine - metabolism</subject><subject>Nicotine - pharmacology</subject><subject>Nicotinic Agonists - pharmacology</subject><subject>Nicotinic Antagonists - pharmacology</subject><subject>Original</subject><subject>original-article</subject><subject>Pharmacotherapy</subject><subject>Plasma</subject><subject>Propofol</subject><subject>Propofol - metabolism</subject><subject>Propofol - pharmacology</subject><subject>Psychiatry</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Serotonin</subject><subject>Sleep</subject><subject>Sleep - drug effects</subject><subject>Time Factors</subject><subject>Toxicology</subject><subject>Tritium - pharmacokinetics</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10Utv1DAUBWALgejQsmONLKSKDWn9SGKHBVI7lIfUioqHVFaWx7mecZWxUzsp4t_jMNMpILGJE_nzybUOQs8oOaKEy2Pf90eM5C9G2AM0o6IkRc3Lq4doRmTDC8r51R56ktI1IbQStXyM9hilRHBKZmh8G8clvoBBL0Ln0hr_cMPKeTysAJ9Gnd_mK-2XkPBv-BlSH3yC1_gLdGAGdwv4QnvXj50eXPA42Ltj3y_ZKT7pBogJX8bQBxs6fGZtPpUO0COruwRPt-s--vbu7Ov8Q3H-6f3H-cl5YWpCh0IwyxrQnBpOLZeisRqYJKVsq4qAlaWR0LZ2oau2hFoCZVaUojWLhtiGtJzvozeb3H5crKE14IeoO9VHt9bxpwraqb93vFupZbhVnFRV3bAc8HIbEMPNCGlQa5cMdJ32EMakGiJoKRsms3zxj7wOY_T5dkpyUbNKyCnu1QaZGFKKYHejUKKmNlVuU01t5sfEn_85_g7f1ZfB4RboZHRno_bGpXvHG0rrcnLFxqW8lduM98P958d4470exgi7wIwmM5Ffo7bDNg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Khokhar, Jibran Y</creator><creator>Tyndale, Rachel F</creator><general>Springer International Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7U7</scope><scope>C1K</scope><scope>5PM</scope></search><sort><creationdate>20110201</creationdate><title>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</title><author>Khokhar, Jibran Y ; Tyndale, Rachel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/378/1385/519</topic><topic>631/92/436/1729</topic><topic>631/92/436/2388</topic><topic>692/698/1688/1366/64</topic><topic>Analysis of Variance</topic><topic>Anesthesia</topic><topic>Anesthetics</topic><topic>Anesthetics, Intravenous - pharmacology</topic><topic>Animals</topic><topic>Behavioral Sciences</topic><topic>Biological and medical sciences</topic><topic>Biological Psychology</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Central nervous system</topic><topic>Chlorisondamine - pharmacology</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 CYP2B1 - metabolism</topic><topic>Cytochrome P450</topic><topic>Data processing</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug abuse</topic><topic>Drug dosages</topic><topic>Drug Interactions</topic><topic>Drug metabolism</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Inactivation, Metabolic - physiology</topic><topic>Injections, Intraventricular</topic><topic>Liver</topic><topic>Male</topic><topic>MDMA</topic><topic>Medical sciences</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Methoxsalen - pharmacokinetics</topic><topic>Neurosciences</topic><topic>Neurotoxins</topic><topic>Neurotransmitters</topic><topic>Nicotine</topic><topic>Nicotine - metabolism</topic><topic>Nicotine - pharmacology</topic><topic>Nicotinic Agonists - pharmacology</topic><topic>Nicotinic Antagonists - pharmacology</topic><topic>Original</topic><topic>original-article</topic><topic>Pharmacotherapy</topic><topic>Plasma</topic><topic>Propofol</topic><topic>Propofol - metabolism</topic><topic>Propofol - pharmacology</topic><topic>Psychiatry</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Serotonin</topic><topic>Sleep</topic><topic>Sleep - drug effects</topic><topic>Time Factors</topic><topic>Toxicology</topic><topic>Tritium - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khokhar, Jibran Y</creatorcontrib><creatorcontrib>Tyndale, Rachel F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khokhar, Jibran Y</au><au>Tyndale, Rachel F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><stitle>Neuropsychopharmacol</stitle><addtitle>Neuropsychopharmacology</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>36</volume><issue>3</issue><spage>692</spage><epage>700</epage><pages>692-700</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><coden>NEROEW</coden><abstract>Drug-metabolizing cytochrome P450 (CYPs) enzymes are expressed in the liver, as well as in extrahepatic tissues such as the brain. Here we show for the first time that drug metabolism by a CYP within the brain, illustrated using CYP2B and the anesthetic propofol (2, 6-diisopropylphenol, Diprivan), can meaningfully alter the pharmacological response to a CNS acting drug. CYP2B is expressed in the brains of animals and humans, and this CYP isoform is able to metabolize centrally acting substrates such as propofol, ecstasy, and serotonin. Rats were given intracerebroventricularly (i.c.v.) injections of vehicle, C8-xanthate, or 8-methoxypsoralen (CYP2B mechanism-based inhibitors) and then tested for sleep time following propofol (80 mg/kg intraperitoneally). Both inhibitors significantly increased sleep-time (1.8- to 2-fold) and brain propofol levels, while having no effect on plasma propofol levels. Seven days of nicotine treatment can induce the expression of brain, but not hepatic, CYP2B, and this induction reduced propofol sleep times by 2.5-fold. This reduction was reversed in a dose-dependent manner by i.c.v. injections of inhibitor. Sleep times correlated with brain ( r =0.76, P =0.0009), but not plasma ( r =0.24, P =0.39) propofol concentrations. Inhibitor treatments increased brain, but not plasma, propofol levels, and had no effect on hepatic enzyme activity. These data indicate that brain CYP2B can metabolize neuroactive substrates (eg, propofol) and can alter their pharmacological response. This has wider implications for localized CYP-mediated metabolism of drugs, neurotransmitters, and neurotoxins within the brain by this highly variable enzyme family and other CYP subfamilies expressed in the brain.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>21107310</pmid><doi>10.1038/npp.2010.202</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-133X
ispartof Neuropsychopharmacology (New York, N.Y.), 2011-02, Vol.36 (3), p.692-700
issn 0893-133X
1740-634X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3055692
source NCBI_PubMed Central(免费)
subjects 631/378/1385/519
631/92/436/1729
631/92/436/2388
692/698/1688/1366/64
Analysis of Variance
Anesthesia
Anesthetics
Anesthetics, Intravenous - pharmacology
Animals
Behavioral Sciences
Biological and medical sciences
Biological Psychology
Brain
Brain - drug effects
Central nervous system
Chlorisondamine - pharmacology
Cytochrome
Cytochrome P-450 CYP2B1 - metabolism
Cytochrome P450
Data processing
Dose-Response Relationship, Drug
Drug abuse
Drug dosages
Drug Interactions
Drug metabolism
Enzyme Inhibitors - pharmacology
Enzymes
Inactivation, Metabolic - physiology
Injections, Intraventricular
Liver
Male
MDMA
Medical sciences
Medicine
Medicine & Public Health
Metabolism
Metabolites
Methoxsalen - pharmacokinetics
Neurosciences
Neurotoxins
Neurotransmitters
Nicotine
Nicotine - metabolism
Nicotine - pharmacology
Nicotinic Agonists - pharmacology
Nicotinic Antagonists - pharmacology
Original
original-article
Pharmacotherapy
Plasma
Propofol
Propofol - metabolism
Propofol - pharmacology
Psychiatry
Rats
Rats, Wistar
Serotonin
Sleep
Sleep - drug effects
Time Factors
Toxicology
Tritium - pharmacokinetics
title Drug Metabolism within the Brain Changes Drug Response: Selective Manipulation of Brain CYP2B Alters Propofol Effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drug%20Metabolism%20within%20the%20Brain%20Changes%20Drug%20Response:%20Selective%20Manipulation%20of%20Brain%20CYP2B%20Alters%20Propofol%20Effects&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Khokhar,%20Jibran%20Y&rft.date=2011-02-01&rft.volume=36&rft.issue=3&rft.spage=692&rft.epage=700&rft.pages=692-700&rft.issn=0893-133X&rft.eissn=1740-634X&rft.coden=NEROEW&rft_id=info:doi/10.1038/npp.2010.202&rft_dat=%3Cproquest_pubme%3E2236772101%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c601t-72f29ea31c31f3879fae28048d550ef84c8eddfba5d4e68e12f747dcb90f90d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=837625782&rft_id=info:pmid/21107310&rfr_iscdi=true