Loading…

Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA

The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA–CopT complex is characterized by a four‐way junction structure and a side‐by‐side alignment of two long intramolec...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2000-11, Vol.19 (21), p.5905-5915
Main Authors: Kolb, Fabrice A., Engdahl, Hilde M., Slagter-Jäger, Jacoba G., Ehresmann, Bernard, Ehresmann, Chantal, Westhof, Eric, Wagner, E.Gerhart H., Romby, Pascale
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6674-8f8c907dbebe2e6870f4e192c61b62476b0659976305f2ad8d84ea584175ffc23
cites
container_end_page 5915
container_issue 21
container_start_page 5905
container_title The EMBO journal
container_volume 19
creator Kolb, Fabrice A.
Engdahl, Hilde M.
Slagter-Jäger, Jacoba G.
Ehresmann, Bernard
Ehresmann, Chantal
Westhof, Eric
Wagner, E.Gerhart H.
Romby, Pascale
description The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA–CopT complex is characterized by a four‐way junction structure and a side‐by‐side alignment of two long intramolecular helices. The significance of this structure for binding in vitro and control in vivo was tested by mutations in both CopA and CopT. High rates of stable complex formation in vitro and efficient inhibition in vivo required initial loop–loop complexes to be rapidly converted to extended interactions. These interactions involve asymmetric helix progression and melting of the upper stems of both RNAs to promote the formation of two intermolecular helices. Data presented here delineate the boundaries of these helices and emphasize the need for unimpeded helix propagation. This process is directional, i.e. one of the two intermolecular helices (B) must form first to allow formation of the other (B′). A binding pathway, characterized by a hierarchy of intermediates leading to an irreversible and inhibitory RNA–RNA complex, is proposed.
doi_str_mv 10.1093/emboj/19.21.5905
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_305787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374526121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6674-8f8c907dbebe2e6870f4e192c61b62476b0659976305f2ad8d84ea584175ffc23</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEoqWwZwOyWLDL1Hb8XLAoVR-gUirEQ2JjOZ6bqYdMPNhJ2_n3eJrRtCChbmzJ53zH1z5F8ZLgCcG62odFHeb7RE8omXCN-aNilzCBS4olf1zsYipIyYjSO8WzlOYYY64keVrsEIIFxozsFukihlmElHzoUGiQRW0Iy3K9IBcWyxZuUB_ycROGWF7bFZoPnevXbp-Qi4Pzts1iRP0lIJuVK9-vxqQIs6G1fYgrZLveJ-gSoC_nB8-LJ41tE7zY7HvFt-Ojr4en5dnnkw-HB2elE0KyUjXKaSynNdRAQSiJGwZEUydILSiTosaCay1FhXlD7VRNFQPLFSOSN42j1V7xbsxdDvUCpg66PtrWLKNf2LgywXrzt9L5SzMLVyYHSiUz_3bDx_B7gNSbhU8O2tZ2EIZkJK2UIlo8aCRSMlxxlY1v_jHO87d2-RMM0ZwKLm9NeDS5GFKK0GwnJtisaze3tWfCUGLWtWfk9f2X3gGbnrNBj4Zr38LqwUBz9On9R8l1xTDLLBnZlLFuBvHe0P8f6NXIdLYfImwvvMssR92nHm62so2_jJCV5ObH-Yn5qb_rY3WhzGn1ByEG5bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195265758</pqid></control><display><type>article</type><title>Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA</title><source>PubMed Central Free</source><creator>Kolb, Fabrice A. ; Engdahl, Hilde M. ; Slagter-Jäger, Jacoba G. ; Ehresmann, Bernard ; Ehresmann, Chantal ; Westhof, Eric ; Wagner, E.Gerhart H. ; Romby, Pascale</creator><creatorcontrib>Kolb, Fabrice A. ; Engdahl, Hilde M. ; Slagter-Jäger, Jacoba G. ; Ehresmann, Bernard ; Ehresmann, Chantal ; Westhof, Eric ; Wagner, E.Gerhart H. ; Romby, Pascale</creatorcontrib><description>The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA–CopT complex is characterized by a four‐way junction structure and a side‐by‐side alignment of two long intramolecular helices. The significance of this structure for binding in vitro and control in vivo was tested by mutations in both CopA and CopT. High rates of stable complex formation in vitro and efficient inhibition in vivo required initial loop–loop complexes to be rapidly converted to extended interactions. These interactions involve asymmetric helix progression and melting of the upper stems of both RNAs to promote the formation of two intermolecular helices. Data presented here delineate the boundaries of these helices and emphasize the need for unimpeded helix propagation. This process is directional, i.e. one of the two intermolecular helices (B) must form first to allow formation of the other (B′). A binding pathway, characterized by a hierarchy of intermediates leading to an irreversible and inhibitory RNA–RNA complex, is proposed.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/19.21.5905</identifier><identifier>PMID: 11060041</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>antisense RNA ; Bacterial Proteins - genetics ; Base Sequence ; Binding, Competitive ; CopA gene ; CopT gene ; DNA Primers - genetics ; Escherichia coli - chemistry ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genes, Bacterial ; loop-loop complex ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; plasmid ; RepA protein ; replication control ; RNA, Antisense - chemistry ; RNA, Antisense - genetics ; RNA, Antisense - metabolism ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA-RNA interaction</subject><ispartof>The EMBO journal, 2000-11, Vol.19 (21), p.5905-5915</ispartof><rights>European Molecular Biology Organization 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 01, 2000</rights><rights>Copyright © 2000 European Molecular Biology Organization 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6674-8f8c907dbebe2e6870f4e192c61b62476b0659976305f2ad8d84ea584175ffc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC305787/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC305787/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11060041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolb, Fabrice A.</creatorcontrib><creatorcontrib>Engdahl, Hilde M.</creatorcontrib><creatorcontrib>Slagter-Jäger, Jacoba G.</creatorcontrib><creatorcontrib>Ehresmann, Bernard</creatorcontrib><creatorcontrib>Ehresmann, Chantal</creatorcontrib><creatorcontrib>Westhof, Eric</creatorcontrib><creatorcontrib>Wagner, E.Gerhart H.</creatorcontrib><creatorcontrib>Romby, Pascale</creatorcontrib><title>Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA–CopT complex is characterized by a four‐way junction structure and a side‐by‐side alignment of two long intramolecular helices. The significance of this structure for binding in vitro and control in vivo was tested by mutations in both CopA and CopT. High rates of stable complex formation in vitro and efficient inhibition in vivo required initial loop–loop complexes to be rapidly converted to extended interactions. These interactions involve asymmetric helix progression and melting of the upper stems of both RNAs to promote the formation of two intermolecular helices. Data presented here delineate the boundaries of these helices and emphasize the need for unimpeded helix propagation. This process is directional, i.e. one of the two intermolecular helices (B) must form first to allow formation of the other (B′). A binding pathway, characterized by a hierarchy of intermediates leading to an irreversible and inhibitory RNA–RNA complex, is proposed.</description><subject>antisense RNA</subject><subject>Bacterial Proteins - genetics</subject><subject>Base Sequence</subject><subject>Binding, Competitive</subject><subject>CopA gene</subject><subject>CopT gene</subject><subject>DNA Primers - genetics</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genes, Bacterial</subject><subject>loop-loop complex</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>plasmid</subject><subject>RepA protein</subject><subject>replication control</subject><subject>RNA, Antisense - chemistry</subject><subject>RNA, Antisense - genetics</subject><subject>RNA, Antisense - metabolism</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA-RNA interaction</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhSMEoqWwZwOyWLDL1Hb8XLAoVR-gUirEQ2JjOZ6bqYdMPNhJ2_n3eJrRtCChbmzJ53zH1z5F8ZLgCcG62odFHeb7RE8omXCN-aNilzCBS4olf1zsYipIyYjSO8WzlOYYY64keVrsEIIFxozsFukihlmElHzoUGiQRW0Iy3K9IBcWyxZuUB_ycROGWF7bFZoPnevXbp-Qi4Pzts1iRP0lIJuVK9-vxqQIs6G1fYgrZLveJ-gSoC_nB8-LJ41tE7zY7HvFt-Ojr4en5dnnkw-HB2elE0KyUjXKaSynNdRAQSiJGwZEUydILSiTosaCay1FhXlD7VRNFQPLFSOSN42j1V7xbsxdDvUCpg66PtrWLKNf2LgywXrzt9L5SzMLVyYHSiUz_3bDx_B7gNSbhU8O2tZ2EIZkJK2UIlo8aCRSMlxxlY1v_jHO87d2-RMM0ZwKLm9NeDS5GFKK0GwnJtisaze3tWfCUGLWtWfk9f2X3gGbnrNBj4Zr38LqwUBz9On9R8l1xTDLLBnZlLFuBvHe0P8f6NXIdLYfImwvvMssR92nHm62so2_jJCV5ObH-Yn5qb_rY3WhzGn1ByEG5bw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>Kolb, Fabrice A.</creator><creator>Engdahl, Hilde M.</creator><creator>Slagter-Jäger, Jacoba G.</creator><creator>Ehresmann, Bernard</creator><creator>Ehresmann, Chantal</creator><creator>Westhof, Eric</creator><creator>Wagner, E.Gerhart H.</creator><creator>Romby, Pascale</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001101</creationdate><title>Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA</title><author>Kolb, Fabrice A. ; Engdahl, Hilde M. ; Slagter-Jäger, Jacoba G. ; Ehresmann, Bernard ; Ehresmann, Chantal ; Westhof, Eric ; Wagner, E.Gerhart H. ; Romby, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6674-8f8c907dbebe2e6870f4e192c61b62476b0659976305f2ad8d84ea584175ffc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>antisense RNA</topic><topic>Bacterial Proteins - genetics</topic><topic>Base Sequence</topic><topic>Binding, Competitive</topic><topic>CopA gene</topic><topic>CopT gene</topic><topic>DNA Primers - genetics</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genes, Bacterial</topic><topic>loop-loop complex</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>plasmid</topic><topic>RepA protein</topic><topic>replication control</topic><topic>RNA, Antisense - chemistry</topic><topic>RNA, Antisense - genetics</topic><topic>RNA, Antisense - metabolism</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA-RNA interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolb, Fabrice A.</creatorcontrib><creatorcontrib>Engdahl, Hilde M.</creatorcontrib><creatorcontrib>Slagter-Jäger, Jacoba G.</creatorcontrib><creatorcontrib>Ehresmann, Bernard</creatorcontrib><creatorcontrib>Ehresmann, Chantal</creatorcontrib><creatorcontrib>Westhof, Eric</creatorcontrib><creatorcontrib>Wagner, E.Gerhart H.</creatorcontrib><creatorcontrib>Romby, Pascale</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolb, Fabrice A.</au><au>Engdahl, Hilde M.</au><au>Slagter-Jäger, Jacoba G.</au><au>Ehresmann, Bernard</au><au>Ehresmann, Chantal</au><au>Westhof, Eric</au><au>Wagner, E.Gerhart H.</au><au>Romby, Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>19</volume><issue>21</issue><spage>5905</spage><epage>5915</epage><pages>5905-5915</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The antisense RNA, CopA, regulates the replication frequency of plasmid R1 through inhibition of RepA translation by rapid and specific binding to its target RNA (CopT). The stable CopA–CopT complex is characterized by a four‐way junction structure and a side‐by‐side alignment of two long intramolecular helices. The significance of this structure for binding in vitro and control in vivo was tested by mutations in both CopA and CopT. High rates of stable complex formation in vitro and efficient inhibition in vivo required initial loop–loop complexes to be rapidly converted to extended interactions. These interactions involve asymmetric helix progression and melting of the upper stems of both RNAs to promote the formation of two intermolecular helices. Data presented here delineate the boundaries of these helices and emphasize the need for unimpeded helix propagation. This process is directional, i.e. one of the two intermolecular helices (B) must form first to allow formation of the other (B′). A binding pathway, characterized by a hierarchy of intermediates leading to an irreversible and inhibitory RNA–RNA complex, is proposed.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11060041</pmid><doi>10.1093/emboj/19.21.5905</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2000-11, Vol.19 (21), p.5905-5915
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_305787
source PubMed Central Free
subjects antisense RNA
Bacterial Proteins - genetics
Base Sequence
Binding, Competitive
CopA gene
CopT gene
DNA Primers - genetics
Escherichia coli - chemistry
Escherichia coli - genetics
Escherichia coli - metabolism
Genes, Bacterial
loop-loop complex
Models, Molecular
Molecular Sequence Data
Mutation
Nucleic Acid Conformation
plasmid
RepA protein
replication control
RNA, Antisense - chemistry
RNA, Antisense - genetics
RNA, Antisense - metabolism
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA-RNA interaction
title Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A09%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progression%20of%20a%20loop-loop%20complex%20to%20a%20four-way%20junction%20is%20crucial%20for%20the%20activity%20of%20a%20regulatory%20antisense%20RNA&rft.jtitle=The%20EMBO%20journal&rft.au=Kolb,%20Fabrice%20A.&rft.date=2000-11-01&rft.volume=19&rft.issue=21&rft.spage=5905&rft.epage=5915&rft.pages=5905-5915&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/19.21.5905&rft_dat=%3Cproquest_pubme%3E374526121%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6674-8f8c907dbebe2e6870f4e192c61b62476b0659976305f2ad8d84ea584175ffc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195265758&rft_id=info:pmid/11060041&rfr_iscdi=true