Loading…

EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling

Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca2+ concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca2+ sign...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-03, Vol.286 (11), p.9657-9667
Main Authors: Yu, Yung-Luen, Chou, Ruey-Hwang, Chen, Ling-Tzu, Shyu, Woei-Cherng, Hsieh, Su-Ching, Wu, Chen-Shiou, Zeng, Hong-Jie, Yeh, Su-Peng, Yang, De-Ming, Hung, Shih-Chieh, Hung, Mien-Chie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373
cites cdi_FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373
container_end_page 9667
container_issue 11
container_start_page 9657
container_title The Journal of biological chemistry
container_volume 286
creator Yu, Yung-Luen
Chou, Ruey-Hwang
Chen, Ling-Tzu
Shyu, Woei-Cherng
Hsieh, Su-Ching
Wu, Chen-Shiou
Zeng, Hong-Jie
Yeh, Su-Peng
Yang, De-Ming
Hung, Shih-Chieh
Hung, Mien-Chie
description Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca2+ concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca2+ signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca2+ chelator or a PLC inhibitor to block IP3-mediated Ca2+ signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P2, a precursor of IP3, and resulted in increasing the intracellular Ca2+ level, suggesting that EZH2 negatively regulates intracellular Ca2+ through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P2 contents and intracellular Ca2+ release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca2+ signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca2+ signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.
doi_str_mv 10.1074/jbc.M110.185124
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820518504</els_id><sourcerecordid>21216957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373</originalsourceid><addsrcrecordid>eNp1kEFv1DAQhS0EokvhzA38B9J67HidXJBQWmhFCxVLJcTF8jrjrKskXtlJpf57vAQqODCX0Wjee2N_hLwGdgJMlad3W3tyDYepksDLJ2QFrBKFkPD9KVkxxqGouayOyIuU7liusobn5IgDh3Ut1YoM5z8uOP2K3dybCRP9jHMMo-npmXcOI46TN5MPIw2OXmPC0e4ehrzeTDjQBvs-0WkXw9zt6M3ljfwETdHiHsc2O2ljeuvngW58lyP92L0kz5zpE7763Y_J7Yfzb81FcfXl42Xz_qqw-RdTwbdGVkqsQTlbSWPLupRKOafWVghktQKGeajWrZIWHMhSci7QlaV0vBJKHJN3S-5-3g7Y2vyYaHq9j34w8UEH4_W_m9HvdBfutWCyZlDmgNMlwMaQUkT36AWmD-R1Jq8P5PVCPjve_H3yUf8HdRa8XQTOBG266JO-3XAGgkEtof4VUS8KzGjuPUadrM_EsfUR7aTb4P97_ifsIpxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling</title><source>ScienceDirect</source><source>PubMed Central(OpenAccess)</source><creator>Yu, Yung-Luen ; Chou, Ruey-Hwang ; Chen, Ling-Tzu ; Shyu, Woei-Cherng ; Hsieh, Su-Ching ; Wu, Chen-Shiou ; Zeng, Hong-Jie ; Yeh, Su-Peng ; Yang, De-Ming ; Hung, Shih-Chieh ; Hung, Mien-Chie</creator><creatorcontrib>Yu, Yung-Luen ; Chou, Ruey-Hwang ; Chen, Ling-Tzu ; Shyu, Woei-Cherng ; Hsieh, Su-Ching ; Wu, Chen-Shiou ; Zeng, Hong-Jie ; Yeh, Su-Peng ; Yang, De-Ming ; Hung, Shih-Chieh ; Hung, Mien-Chie</creatorcontrib><description>Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca2+ concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca2+ signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca2+ chelator or a PLC inhibitor to block IP3-mediated Ca2+ signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P2, a precursor of IP3, and resulted in increasing the intracellular Ca2+ level, suggesting that EZH2 negatively regulates intracellular Ca2+ through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P2 contents and intracellular Ca2+ release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca2+ signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca2+ signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M110.185124</identifier><identifier>PMID: 21216957</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Calcium ; Calcium - metabolism ; Calcium Signaling - drug effects ; Calcium Signaling - physiology ; Cell Biology ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Cells, Cultured ; Chelating Agents - pharmacology ; Differentiation ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enhancer of Zeste Homolog 2 Protein ; EZH2 ; Gene Expression ; Gene Expression Regulation, Enzymologic - drug effects ; Gene Expression Regulation, Enzymologic - physiology ; Gene Knockdown Techniques ; Gene Regulation ; Humans ; Intracellular Calcium ; Mesenchymal Stem Cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Nervous System Diseases - genetics ; Nervous System Diseases - metabolism ; Nervous System Diseases - therapy ; Neuron ; Neuronal Differentiation ; Neurons - cytology ; Neurons - metabolism ; Phosphotransferases (Alcohol Group Acceptor) - biosynthesis ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; PIP5K1C ; Polycomb Repressive Complex 2 ; Promoter Regions, Genetic - drug effects ; Promoter Regions, Genetic - physiology ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The Journal of biological chemistry, 2011-03, Vol.286 (11), p.9657-9667</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373</citedby><cites>FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059014/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925820518504$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21216957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Yung-Luen</creatorcontrib><creatorcontrib>Chou, Ruey-Hwang</creatorcontrib><creatorcontrib>Chen, Ling-Tzu</creatorcontrib><creatorcontrib>Shyu, Woei-Cherng</creatorcontrib><creatorcontrib>Hsieh, Su-Ching</creatorcontrib><creatorcontrib>Wu, Chen-Shiou</creatorcontrib><creatorcontrib>Zeng, Hong-Jie</creatorcontrib><creatorcontrib>Yeh, Su-Peng</creatorcontrib><creatorcontrib>Yang, De-Ming</creatorcontrib><creatorcontrib>Hung, Shih-Chieh</creatorcontrib><creatorcontrib>Hung, Mien-Chie</creatorcontrib><title>EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca2+ concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca2+ signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca2+ chelator or a PLC inhibitor to block IP3-mediated Ca2+ signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P2, a precursor of IP3, and resulted in increasing the intracellular Ca2+ level, suggesting that EZH2 negatively regulates intracellular Ca2+ through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P2 contents and intracellular Ca2+ release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca2+ signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca2+ signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.</description><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling - drug effects</subject><subject>Calcium Signaling - physiology</subject><subject>Cell Biology</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Cells, Cultured</subject><subject>Chelating Agents - pharmacology</subject><subject>Differentiation</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enhancer of Zeste Homolog 2 Protein</subject><subject>EZH2</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene Knockdown Techniques</subject><subject>Gene Regulation</subject><subject>Humans</subject><subject>Intracellular Calcium</subject><subject>Mesenchymal Stem Cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Nervous System Diseases - genetics</subject><subject>Nervous System Diseases - metabolism</subject><subject>Nervous System Diseases - therapy</subject><subject>Neuron</subject><subject>Neuronal Differentiation</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>PIP5K1C</subject><subject>Polycomb Repressive Complex 2</subject><subject>Promoter Regions, Genetic - drug effects</subject><subject>Promoter Regions, Genetic - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kEFv1DAQhS0EokvhzA38B9J67HidXJBQWmhFCxVLJcTF8jrjrKskXtlJpf57vAQqODCX0Wjee2N_hLwGdgJMlad3W3tyDYepksDLJ2QFrBKFkPD9KVkxxqGouayOyIuU7liusobn5IgDh3Ut1YoM5z8uOP2K3dybCRP9jHMMo-npmXcOI46TN5MPIw2OXmPC0e4ehrzeTDjQBvs-0WkXw9zt6M3ljfwETdHiHsc2O2ljeuvngW58lyP92L0kz5zpE7763Y_J7Yfzb81FcfXl42Xz_qqw-RdTwbdGVkqsQTlbSWPLupRKOafWVghktQKGeajWrZIWHMhSci7QlaV0vBJKHJN3S-5-3g7Y2vyYaHq9j34w8UEH4_W_m9HvdBfutWCyZlDmgNMlwMaQUkT36AWmD-R1Jq8P5PVCPjve_H3yUf8HdRa8XQTOBG266JO-3XAGgkEtof4VUS8KzGjuPUadrM_EsfUR7aTb4P97_ifsIpxc</recordid><startdate>20110318</startdate><enddate>20110318</enddate><creator>Yu, Yung-Luen</creator><creator>Chou, Ruey-Hwang</creator><creator>Chen, Ling-Tzu</creator><creator>Shyu, Woei-Cherng</creator><creator>Hsieh, Su-Ching</creator><creator>Wu, Chen-Shiou</creator><creator>Zeng, Hong-Jie</creator><creator>Yeh, Su-Peng</creator><creator>Yang, De-Ming</creator><creator>Hung, Shih-Chieh</creator><creator>Hung, Mien-Chie</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110318</creationdate><title>EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling</title><author>Yu, Yung-Luen ; Chou, Ruey-Hwang ; Chen, Ling-Tzu ; Shyu, Woei-Cherng ; Hsieh, Su-Ching ; Wu, Chen-Shiou ; Zeng, Hong-Jie ; Yeh, Su-Peng ; Yang, De-Ming ; Hung, Shih-Chieh ; Hung, Mien-Chie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling - drug effects</topic><topic>Calcium Signaling - physiology</topic><topic>Cell Biology</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Cells, Cultured</topic><topic>Chelating Agents - pharmacology</topic><topic>Differentiation</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enhancer of Zeste Homolog 2 Protein</topic><topic>EZH2</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene Knockdown Techniques</topic><topic>Gene Regulation</topic><topic>Humans</topic><topic>Intracellular Calcium</topic><topic>Mesenchymal Stem Cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Nervous System Diseases - genetics</topic><topic>Nervous System Diseases - metabolism</topic><topic>Nervous System Diseases - therapy</topic><topic>Neuron</topic><topic>Neuronal Differentiation</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - biosynthesis</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>PIP5K1C</topic><topic>Polycomb Repressive Complex 2</topic><topic>Promoter Regions, Genetic - drug effects</topic><topic>Promoter Regions, Genetic - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yung-Luen</creatorcontrib><creatorcontrib>Chou, Ruey-Hwang</creatorcontrib><creatorcontrib>Chen, Ling-Tzu</creatorcontrib><creatorcontrib>Shyu, Woei-Cherng</creatorcontrib><creatorcontrib>Hsieh, Su-Ching</creatorcontrib><creatorcontrib>Wu, Chen-Shiou</creatorcontrib><creatorcontrib>Zeng, Hong-Jie</creatorcontrib><creatorcontrib>Yeh, Su-Peng</creatorcontrib><creatorcontrib>Yang, De-Ming</creatorcontrib><creatorcontrib>Hung, Shih-Chieh</creatorcontrib><creatorcontrib>Hung, Mien-Chie</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yung-Luen</au><au>Chou, Ruey-Hwang</au><au>Chen, Ling-Tzu</au><au>Shyu, Woei-Cherng</au><au>Hsieh, Su-Ching</au><au>Wu, Chen-Shiou</au><au>Zeng, Hong-Jie</au><au>Yeh, Su-Peng</au><au>Yang, De-Ming</au><au>Hung, Shih-Chieh</au><au>Hung, Mien-Chie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-03-18</date><risdate>2011</risdate><volume>286</volume><issue>11</issue><spage>9657</spage><epage>9667</epage><pages>9657-9667</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca2+ concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca2+ signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca2+ chelator or a PLC inhibitor to block IP3-mediated Ca2+ signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P2, a precursor of IP3, and resulted in increasing the intracellular Ca2+ level, suggesting that EZH2 negatively regulates intracellular Ca2+ through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P2 contents and intracellular Ca2+ release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca2+ signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca2+ signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21216957</pmid><doi>10.1074/jbc.M110.185124</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-03, Vol.286 (11), p.9657-9667
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3059014
source ScienceDirect; PubMed Central(OpenAccess)
subjects Calcium
Calcium - metabolism
Calcium Signaling - drug effects
Calcium Signaling - physiology
Cell Biology
Cell Differentiation - drug effects
Cell Differentiation - physiology
Cells, Cultured
Chelating Agents - pharmacology
Differentiation
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enhancer of Zeste Homolog 2 Protein
EZH2
Gene Expression
Gene Expression Regulation, Enzymologic - drug effects
Gene Expression Regulation, Enzymologic - physiology
Gene Knockdown Techniques
Gene Regulation
Humans
Intracellular Calcium
Mesenchymal Stem Cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Nervous System Diseases - genetics
Nervous System Diseases - metabolism
Nervous System Diseases - therapy
Neuron
Neuronal Differentiation
Neurons - cytology
Neurons - metabolism
Phosphotransferases (Alcohol Group Acceptor) - biosynthesis
Phosphotransferases (Alcohol Group Acceptor) - genetics
PIP5K1C
Polycomb Repressive Complex 2
Promoter Regions, Genetic - drug effects
Promoter Regions, Genetic - physiology
Transcription Factors - genetics
Transcription Factors - metabolism
title EZH2 Regulates Neuronal Differentiation of Mesenchymal Stem Cells through PIP5K1C-dependent Calcium Signaling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EZH2%20Regulates%20Neuronal%20Differentiation%20of%20Mesenchymal%20Stem%20Cells%20through%20PIP5K1C-dependent%20Calcium%20Signaling&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yu,%20Yung-Luen&rft.date=2011-03-18&rft.volume=286&rft.issue=11&rft.spage=9657&rft.epage=9667&rft.pages=9657-9667&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M110.185124&rft_dat=%3Cpubmed_cross%3E21216957%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c512t-2ba5873617fc85ac494577ff76c33e09710ef7686d75c1f1545223ef445f28373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21216957&rfr_iscdi=true