Loading…

A Clinically Applicable Porcine Model of Septic and Ischemia/Reperfusion-Induced Shock and Multiple Organ Injury

Background Although many sepsis treatments have shown efficacy in acute animal models, at present only activated protein C is effective in humans. The likely reason for this discrepancy is that most of the animal models used for preclinical testing do not accurately replicate the complex pathogenesi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of surgical research 2011-03, Vol.166 (1), p.e59-e69
Main Authors: Kubiak, Brian D., M.D, Albert, Scott P., M.D, Gatto, Louis A., Ph.D, Vieau, Christopher J., B.A, Roy, Shreyas K., M.D, Snyder, Kathleen P., CST, AS, Maier, Kristopher G., Ph.D, Nieman, Gary F., B.S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background Although many sepsis treatments have shown efficacy in acute animal models, at present only activated protein C is effective in humans. The likely reason for this discrepancy is that most of the animal models used for preclinical testing do not accurately replicate the complex pathogenesis of human sepsis. Our objective in this study was to develop a clinically applicable model of severe sepsis and gut ischemia/reperfusion (I/R) that would cause multiple organ injury over a period of 48 h. Materials and Methods Anesthetized, instrumented, and ventilated pigs were subjected to a “two-hit” injury by placement of a fecal clot through a laparotomy and by clamping the superior mesenteric artery (SMA) for 30 min. The animals were monitored for 48 h. Wide spectrum antibiotics and intravenous fluids were given to maintain hemodynamic status. FiO2 was increased in response to oxygen desaturation. Twelve hours following injury, a drain was placed in the laparotomy wound. Extensive hemodynamic, lung, kidney, liver, and renal function measurements and serial measurements of arterial and mixed venous blood gases were made. Bladder pressure was measured as a surrogate for intra-peritoneal pressure to identify the development of the abdominal compartment syndrome (ACS). Plasma and peritoneal ascites cytokine concentration were measured at regular intervals. Tissues were harvested and fixed at necropsy for detailed morphometric analysis. Results Polymicrobial sepsis developed in all animals. There was a progressive deterioration of organ function over the 48 h. The lung, kidney, liver, and intestine all demonstrated clinical and histopathologic injury. Acute lung injury (ALI) and ACS developed by consensus definitions. Increases in multiple cytokines in serum and peritoneal fluid paralleled the dysfunction found in major organs. Conclusion This animal model of Sepsis+I/R replicates the systemic inflammation and dysfunction of the major organ systems that is typically seen in human sepsis and trauma patients. The model should be useful in deciphering the complex pathophysiology of septic shock as it transitions to end-organ injury thus allowing sophisticated preclinical studies on potential treatments.
ISSN:0022-4804
1095-8673
1095-8673
DOI:10.1016/j.jss.2010.10.014