Loading…
Volumetric analysis of regional cerebral development in preterm children
Preterm birth is frequently associated with both neuropathologic and cognitive sequelae. This study examined cortical lobe, subcortical, and lateral ventricle development in association with perinatal variables and cognitive outcome. High-resolution volumetric magnetic resonance imaging scans were a...
Saved in:
Published in: | Pediatric neurology 2004-11, Vol.31 (5), p.318-325 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Preterm birth is frequently associated with both neuropathologic and cognitive sequelae. This study examined cortical lobe, subcortical, and lateral ventricle development in association with perinatal variables and cognitive outcome. High-resolution volumetric magnetic resonance imaging scans were acquired and quantified using advanced image processing techniques. Seventy-three preterm and 33 term control children ages 7.3-11.4 years were included in the study. Results indicated disproportionately enlarged parietal and frontal gray matter, occipital horn, and ventricular body, as well as reduced temporal and subcortical gray volumes in preterm children compared with control subjects. Birth weight was negatively correlated with parietal and frontal gray, as well as occipital horn volumes. Intraventricular hemorrhage was associated with reduced subcortical gray matter. Ventricular cerebrospinal fluid was negatively correlated with subcortical gray matter volumes but not with white matter volumes. Maternal education was the strongest predictor of cognitive function in the preterm group. Preterm birth appears to be associated with disorganized cortical development, possibly involving disrupted synaptic pruning and neural migration. Lower birth weight and the presence of intraventricular hemorrhage may increase the risk for neuroanatomic abnormality. |
---|---|
ISSN: | 0887-8994 1873-5150 |
DOI: | 10.1016/j.pediatrneurol.2004.06.008 |