Loading…

Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli

Uropathogenic Escherichia coli proceed through a complex intracellular developmental pathway that includes multiple morphological changes. During intracellular growth within Toll-like receptor 4-activated superficial bladder epithelial cells, a subpopulation of uropathogenic E. coli initiates SulA-m...

Full description

Saved in:
Bibliographic Details
Published in:Microbes and infection 2011-05, Vol.13 (5), p.426-437
Main Authors: Horvath, Dennis J., Li, Birong, Casper, Travis, Partida-Sanchez, Santiago, Hunstad, David A., Hultgren, Scott J., Justice, Sheryl S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Uropathogenic Escherichia coli proceed through a complex intracellular developmental pathway that includes multiple morphological changes. During intracellular growth within Toll-like receptor 4-activated superficial bladder epithelial cells, a subpopulation of uropathogenic E. coli initiates SulA-mediated filamentation. In this study, we directly investigated the role of bacterial morphology in the survival of uropathogenic E. coli from killing by phagocytes. We initially determined that both polymorphonuclear neutrophils and macrophages are recruited to murine bladder epithelium at times coincident with extracellular bacillary and filamentous uropathogenic E. coli. We further determined that bacillary uropathogenic E. coli were preferentially destroyed when mixed uropathogenic E. coli populations were challenged with cultured murine macrophages in vitro. Consistent with studies using elliptical-shaped polymers, the initial point of contact between the phagocyte and filamentous uropathogenic E. coli influenced the efficacy of internalization. These findings demonstrate that filamentous morphology provides a selective advantage for uropathogenic E. coli evasion of killing by phagocytes and defines a mechanism for the essential role for SulA during bacterial cystitis. Thus, morphological plasticity can be viewed as a distinct class of mechanism used by bacterial pathogens to subvert host immunity.
ISSN:1286-4579
1769-714X
DOI:10.1016/j.micinf.2010.12.004