Loading…

Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunit-subunit interactions on the 70S ribosome

The small and large subunits of the ribosome are held together by a series of bridges, involving RNA-RNA, RNA-protein and protein-protein interactions. Some 12 bridges have been described for the Escherichia coli 70S ribosome. In this work, we have targeted for mutagenesis, some of the 16S rRNA resi...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2011-04, Vol.39 (8), p.3321-3330
Main Authors: Sun, Qing, Vila-Sanjurjo, Antón, O'Connor, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The small and large subunits of the ribosome are held together by a series of bridges, involving RNA-RNA, RNA-protein and protein-protein interactions. Some 12 bridges have been described for the Escherichia coli 70S ribosome. In this work, we have targeted for mutagenesis, some of the 16S rRNA residues involved in the formation of intersubunit bridges B3, B5, B6, B7b and B8. In addition to effects on subunit association, the mutant ribosomes also affect the fidelity of translation; bridges B5, B6 and B8 increase decoding errors during elongation, while disruption of bridges B3 and B7b alters the stringency of start codon selection. Moreover, mutations in the bridge B5, B6 and B8 regions of 16S rRNA also correct the growth and decoding defects associated with alterations in ribosomal protein S12. These results link bridges B5, B6 and B8 with the decoding process and are consistent with the recently described location of translation factor EF-Tu on the ribosome and the proposed involvement of h14 in activating Guanosine-5'-triphosphate (GTP) hydrolysis by aminoacyl-tRNA • EF-Tu • GTP. These observations are consistent with a model in which bridges B5, B6 and B8 contribute to the fidelity of translation by modulating GTP hydrolysis by aminoacyl-tRNA • EF-Tu • GTP ternary complexes during the elongation phase of protein synthesis.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkq1253