Loading…
Endoplasmic Reticulum Aminopeptidase Associated with Antigen Processing Defines the Composition and Structure of MHC Class I Peptide Repertoire in Normal and Virus-Infected Cells
The MHC class I (MHC-I) molecules ferry a cargo of peptides to the cell surface as potential ligands for CD8(+) cytotoxic T cells. For nearly 20 years, the cargo has been described as a collection of short 8-9 mer peptides, whose length and sequences were believed to be primarily determined by the p...
Saved in:
Published in: | The Journal of immunology (1950) 2010-03, Vol.184 (6), p.3033-3042 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The MHC class I (MHC-I) molecules ferry a cargo of peptides to the cell surface as potential ligands for CD8(+) cytotoxic T cells. For nearly 20 years, the cargo has been described as a collection of short 8-9 mer peptides, whose length and sequences were believed to be primarily determined by the peptide-binding groove of MHC-I molecules. Yet the mechanisms for producing peptides of such optimal length and composition have remained unclear. In this study, using mass spectrometry, we determined the amino acid sequences of a large number of naturally processed peptides in mice lacking the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). We find that ERAAP-deficiency changed the oeuvre and caused a marked increase in the length of peptides normally presented by MHC-I. Furthermore, we observed similar changes in the length of viral peptides recognized by CD8(+) T cells in mouse CMV-infected ERAAP-deficient mice. In these mice, a distinct CD8(+) T cell population was elicited with specificity for an N-terminally extended epitope. Thus, the characteristic length, as well as the composition of MHC-I peptide cargo, is determined not only by the MHC-I peptide-binding groove but also by ERAAP proteolysis in the endoplasmic reticulum. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.0903712 |