Loading…
Negative regulation of mTOR activation by diacylglycerol kinases
The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survi...
Saved in:
Published in: | Blood 2011-04, Vol.117 (15), p.4022-4031 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53 |
container_end_page | 4031 |
container_issue | 15 |
container_start_page | 4022 |
container_title | Blood |
container_volume | 117 |
creator | Gorentla, Balachandra K. Wan, Chi-Keung Zhong, Xiao-Ping |
description | The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation. |
doi_str_mv | 10.1182/blood-2010-08-300731 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120452711</els_id><sourcerecordid>862270115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</originalsourceid><addsrcrecordid>eNp9kE9vEzEQxS1ERUPhGyC0F8Rp6dhrx94LAlX8k6pWQuVsecfjYHDWxd5EyrdnQ0ILl57Gmnnz5vnH2AsObzg34nxIOftWAIcWTNsB6I4_YguuhGkBBDxmCwBYtrLX_JQ9rfUHAJedUE_YqeAdh16oBXt3RSs3xS01hVabND_z2OTQrG-uvzYO58mhNewaHx3u0irtkEpOzc84ukr1GTsJLlV6fqxn7NvHDzcXn9vL609fLt5ftqiUmdre-OAGrXCpTE9Oux5VJzwPppeOoxBezzlhQOpMMFoqHbxCRCl7khhUd8beHnxvN8OaPNI4FZfsbYlrV3Y2u2j_n4zxu13lre3AaCX62eD10aDkXxuqk13HipSSGylvqjVLITRwvj8lD0osudZC4e4KB7tnb_-wt3v2Fow9sJ_XXv6b8G7pL-xZ8OoocBVdCsWNGOu9ToKRSi3vv0ozz22kYitGGpF8LIST9Tk-nOQ3O6akAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862270115</pqid></control><display><type>article</type><title>Negative regulation of mTOR activation by diacylglycerol kinases</title><source>Elsevier ScienceDirect Journals</source><creator>Gorentla, Balachandra K. ; Wan, Chi-Keung ; Zhong, Xiao-Ping</creator><creatorcontrib>Gorentla, Balachandra K. ; Wan, Chi-Keung ; Zhong, Xiao-Ping</creatorcontrib><description>The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2010-08-300731</identifier><identifier>PMID: 21310925</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Cell Line ; Diacylglycerol Kinase - genetics ; Diacylglycerol Kinase - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Hematologic and hematopoietic diseases ; Immunobiology ; Immunologic Memory - physiology ; Lymphocyte Activation - physiology ; MAP Kinase Kinase 1 - metabolism ; MAP Kinase Kinase 2 - metabolism ; MAP Kinase Signaling System - immunology ; Medical sciences ; Mice ; Mice, Mutant Strains ; Phosphatidylinositol 3-Kinases - metabolism ; ras Proteins - metabolism ; Receptors, Antigen, T-Cell - metabolism ; T-Lymphocytes - enzymology ; Thymus Gland - cytology ; Thymus Gland - immunology ; Thymus Gland - metabolism ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factor AP-1 - metabolism</subject><ispartof>Blood, 2011-04, Vol.117 (15), p.4022-4031</ispartof><rights>2011 American Society of Hematology</rights><rights>2015 INIST-CNRS</rights><rights>2011 by The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</citedby><cites>FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120452711$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24084556$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21310925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorentla, Balachandra K.</creatorcontrib><creatorcontrib>Wan, Chi-Keung</creatorcontrib><creatorcontrib>Zhong, Xiao-Ping</creatorcontrib><title>Negative regulation of mTOR activation by diacylglycerol kinases</title><title>Blood</title><addtitle>Blood</addtitle><description>The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Diacylglycerol Kinase - genetics</subject><subject>Diacylglycerol Kinase - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Immunobiology</subject><subject>Immunologic Memory - physiology</subject><subject>Lymphocyte Activation - physiology</subject><subject>MAP Kinase Kinase 1 - metabolism</subject><subject>MAP Kinase Kinase 2 - metabolism</subject><subject>MAP Kinase Signaling System - immunology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>ras Proteins - metabolism</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>T-Lymphocytes - enzymology</subject><subject>Thymus Gland - cytology</subject><subject>Thymus Gland - immunology</subject><subject>Thymus Gland - metabolism</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factor AP-1 - metabolism</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9vEzEQxS1ERUPhGyC0F8Rp6dhrx94LAlX8k6pWQuVsecfjYHDWxd5EyrdnQ0ILl57Gmnnz5vnH2AsObzg34nxIOftWAIcWTNsB6I4_YguuhGkBBDxmCwBYtrLX_JQ9rfUHAJedUE_YqeAdh16oBXt3RSs3xS01hVabND_z2OTQrG-uvzYO58mhNewaHx3u0irtkEpOzc84ukr1GTsJLlV6fqxn7NvHDzcXn9vL609fLt5ftqiUmdre-OAGrXCpTE9Oux5VJzwPppeOoxBezzlhQOpMMFoqHbxCRCl7khhUd8beHnxvN8OaPNI4FZfsbYlrV3Y2u2j_n4zxu13lre3AaCX62eD10aDkXxuqk13HipSSGylvqjVLITRwvj8lD0osudZC4e4KB7tnb_-wt3v2Fow9sJ_XXv6b8G7pL-xZ8OoocBVdCsWNGOu9ToKRSi3vv0ozz22kYitGGpF8LIST9Tk-nOQ3O6akAg</recordid><startdate>20110414</startdate><enddate>20110414</enddate><creator>Gorentla, Balachandra K.</creator><creator>Wan, Chi-Keung</creator><creator>Zhong, Xiao-Ping</creator><general>Elsevier Inc</general><general>Americain Society of Hematology</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110414</creationdate><title>Negative regulation of mTOR activation by diacylglycerol kinases</title><author>Gorentla, Balachandra K. ; Wan, Chi-Keung ; Zhong, Xiao-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Diacylglycerol Kinase - genetics</topic><topic>Diacylglycerol Kinase - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Immunobiology</topic><topic>Immunologic Memory - physiology</topic><topic>Lymphocyte Activation - physiology</topic><topic>MAP Kinase Kinase 1 - metabolism</topic><topic>MAP Kinase Kinase 2 - metabolism</topic><topic>MAP Kinase Signaling System - immunology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>ras Proteins - metabolism</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>T-Lymphocytes - enzymology</topic><topic>Thymus Gland - cytology</topic><topic>Thymus Gland - immunology</topic><topic>Thymus Gland - metabolism</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factor AP-1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorentla, Balachandra K.</creatorcontrib><creatorcontrib>Wan, Chi-Keung</creatorcontrib><creatorcontrib>Zhong, Xiao-Ping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorentla, Balachandra K.</au><au>Wan, Chi-Keung</au><au>Zhong, Xiao-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative regulation of mTOR activation by diacylglycerol kinases</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2011-04-14</date><risdate>2011</risdate><volume>117</volume><issue>15</issue><spage>4022</spage><epage>4031</epage><pages>4022-4031</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>21310925</pmid><doi>10.1182/blood-2010-08-300731</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2011-04, Vol.117 (15), p.4022-4031 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087529 |
source | Elsevier ScienceDirect Journals |
subjects | Animals Biological and medical sciences Cell Line Diacylglycerol Kinase - genetics Diacylglycerol Kinase - metabolism Extracellular Signal-Regulated MAP Kinases - metabolism Hematologic and hematopoietic diseases Immunobiology Immunologic Memory - physiology Lymphocyte Activation - physiology MAP Kinase Kinase 1 - metabolism MAP Kinase Kinase 2 - metabolism MAP Kinase Signaling System - immunology Medical sciences Mice Mice, Mutant Strains Phosphatidylinositol 3-Kinases - metabolism ras Proteins - metabolism Receptors, Antigen, T-Cell - metabolism T-Lymphocytes - enzymology Thymus Gland - cytology Thymus Gland - immunology Thymus Gland - metabolism TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism Transcription Factor AP-1 - metabolism |
title | Negative regulation of mTOR activation by diacylglycerol kinases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20regulation%20of%20mTOR%20activation%20by%20diacylglycerol%20kinases&rft.jtitle=Blood&rft.au=Gorentla,%20Balachandra%20K.&rft.date=2011-04-14&rft.volume=117&rft.issue=15&rft.spage=4022&rft.epage=4031&rft.pages=4022-4031&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2010-08-300731&rft_dat=%3Cproquest_pubme%3E862270115%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862270115&rft_id=info:pmid/21310925&rfr_iscdi=true |