Loading…

Negative regulation of mTOR activation by diacylglycerol kinases

The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survi...

Full description

Saved in:
Bibliographic Details
Published in:Blood 2011-04, Vol.117 (15), p.4022-4031
Main Authors: Gorentla, Balachandra K., Wan, Chi-Keung, Zhong, Xiao-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53
cites cdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53
container_end_page 4031
container_issue 15
container_start_page 4022
container_title Blood
container_volume 117
creator Gorentla, Balachandra K.
Wan, Chi-Keung
Zhong, Xiao-Ping
description The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.
doi_str_mv 10.1182/blood-2010-08-300731
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120452711</els_id><sourcerecordid>862270115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</originalsourceid><addsrcrecordid>eNp9kE9vEzEQxS1ERUPhGyC0F8Rp6dhrx94LAlX8k6pWQuVsecfjYHDWxd5EyrdnQ0ILl57Gmnnz5vnH2AsObzg34nxIOftWAIcWTNsB6I4_YguuhGkBBDxmCwBYtrLX_JQ9rfUHAJedUE_YqeAdh16oBXt3RSs3xS01hVabND_z2OTQrG-uvzYO58mhNewaHx3u0irtkEpOzc84ukr1GTsJLlV6fqxn7NvHDzcXn9vL609fLt5ftqiUmdre-OAGrXCpTE9Oux5VJzwPppeOoxBezzlhQOpMMFoqHbxCRCl7khhUd8beHnxvN8OaPNI4FZfsbYlrV3Y2u2j_n4zxu13lre3AaCX62eD10aDkXxuqk13HipSSGylvqjVLITRwvj8lD0osudZC4e4KB7tnb_-wt3v2Fow9sJ_XXv6b8G7pL-xZ8OoocBVdCsWNGOu9ToKRSi3vv0ozz22kYitGGpF8LIST9Tk-nOQ3O6akAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862270115</pqid></control><display><type>article</type><title>Negative regulation of mTOR activation by diacylglycerol kinases</title><source>Elsevier ScienceDirect Journals</source><creator>Gorentla, Balachandra K. ; Wan, Chi-Keung ; Zhong, Xiao-Ping</creator><creatorcontrib>Gorentla, Balachandra K. ; Wan, Chi-Keung ; Zhong, Xiao-Ping</creatorcontrib><description>The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood-2010-08-300731</identifier><identifier>PMID: 21310925</identifier><language>eng</language><publisher>Washington, DC: Elsevier Inc</publisher><subject>Animals ; Biological and medical sciences ; Cell Line ; Diacylglycerol Kinase - genetics ; Diacylglycerol Kinase - metabolism ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Hematologic and hematopoietic diseases ; Immunobiology ; Immunologic Memory - physiology ; Lymphocyte Activation - physiology ; MAP Kinase Kinase 1 - metabolism ; MAP Kinase Kinase 2 - metabolism ; MAP Kinase Signaling System - immunology ; Medical sciences ; Mice ; Mice, Mutant Strains ; Phosphatidylinositol 3-Kinases - metabolism ; ras Proteins - metabolism ; Receptors, Antigen, T-Cell - metabolism ; T-Lymphocytes - enzymology ; Thymus Gland - cytology ; Thymus Gland - immunology ; Thymus Gland - metabolism ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; Transcription Factor AP-1 - metabolism</subject><ispartof>Blood, 2011-04, Vol.117 (15), p.4022-4031</ispartof><rights>2011 American Society of Hematology</rights><rights>2015 INIST-CNRS</rights><rights>2011 by The American Society of Hematology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</citedby><cites>FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006497120452711$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24084556$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21310925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorentla, Balachandra K.</creatorcontrib><creatorcontrib>Wan, Chi-Keung</creatorcontrib><creatorcontrib>Zhong, Xiao-Ping</creatorcontrib><title>Negative regulation of mTOR activation by diacylglycerol kinases</title><title>Blood</title><addtitle>Blood</addtitle><description>The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Line</subject><subject>Diacylglycerol Kinase - genetics</subject><subject>Diacylglycerol Kinase - metabolism</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Hematologic and hematopoietic diseases</subject><subject>Immunobiology</subject><subject>Immunologic Memory - physiology</subject><subject>Lymphocyte Activation - physiology</subject><subject>MAP Kinase Kinase 1 - metabolism</subject><subject>MAP Kinase Kinase 2 - metabolism</subject><subject>MAP Kinase Signaling System - immunology</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>ras Proteins - metabolism</subject><subject>Receptors, Antigen, T-Cell - metabolism</subject><subject>T-Lymphocytes - enzymology</subject><subject>Thymus Gland - cytology</subject><subject>Thymus Gland - immunology</subject><subject>Thymus Gland - metabolism</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription Factor AP-1 - metabolism</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE9vEzEQxS1ERUPhGyC0F8Rp6dhrx94LAlX8k6pWQuVsecfjYHDWxd5EyrdnQ0ILl57Gmnnz5vnH2AsObzg34nxIOftWAIcWTNsB6I4_YguuhGkBBDxmCwBYtrLX_JQ9rfUHAJedUE_YqeAdh16oBXt3RSs3xS01hVabND_z2OTQrG-uvzYO58mhNewaHx3u0irtkEpOzc84ukr1GTsJLlV6fqxn7NvHDzcXn9vL609fLt5ftqiUmdre-OAGrXCpTE9Oux5VJzwPppeOoxBezzlhQOpMMFoqHbxCRCl7khhUd8beHnxvN8OaPNI4FZfsbYlrV3Y2u2j_n4zxu13lre3AaCX62eD10aDkXxuqk13HipSSGylvqjVLITRwvj8lD0osudZC4e4KB7tnb_-wt3v2Fow9sJ_XXv6b8G7pL-xZ8OoocBVdCsWNGOu9ToKRSi3vv0ozz22kYitGGpF8LIST9Tk-nOQ3O6akAg</recordid><startdate>20110414</startdate><enddate>20110414</enddate><creator>Gorentla, Balachandra K.</creator><creator>Wan, Chi-Keung</creator><creator>Zhong, Xiao-Ping</creator><general>Elsevier Inc</general><general>Americain Society of Hematology</general><general>American Society of Hematology</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110414</creationdate><title>Negative regulation of mTOR activation by diacylglycerol kinases</title><author>Gorentla, Balachandra K. ; Wan, Chi-Keung ; Zhong, Xiao-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Line</topic><topic>Diacylglycerol Kinase - genetics</topic><topic>Diacylglycerol Kinase - metabolism</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Hematologic and hematopoietic diseases</topic><topic>Immunobiology</topic><topic>Immunologic Memory - physiology</topic><topic>Lymphocyte Activation - physiology</topic><topic>MAP Kinase Kinase 1 - metabolism</topic><topic>MAP Kinase Kinase 2 - metabolism</topic><topic>MAP Kinase Signaling System - immunology</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>ras Proteins - metabolism</topic><topic>Receptors, Antigen, T-Cell - metabolism</topic><topic>T-Lymphocytes - enzymology</topic><topic>Thymus Gland - cytology</topic><topic>Thymus Gland - immunology</topic><topic>Thymus Gland - metabolism</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription Factor AP-1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorentla, Balachandra K.</creatorcontrib><creatorcontrib>Wan, Chi-Keung</creatorcontrib><creatorcontrib>Zhong, Xiao-Ping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorentla, Balachandra K.</au><au>Wan, Chi-Keung</au><au>Zhong, Xiao-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative regulation of mTOR activation by diacylglycerol kinases</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2011-04-14</date><risdate>2011</risdate><volume>117</volume><issue>15</issue><spage>4022</spage><epage>4031</epage><pages>4022-4031</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiation have been revealed using chemical inhibitors or by genetic ablation of mTOR in T cells. However, the connection between mTOR signaling and other signaling cascades downstream of TCR is unclear. We demonstrate that diacylglycerol (DAG) and TCR engagement activate signaling in both mTOR complexes 1 and 2 through the activation of the Ras–mitogen-activated protein kinase/extracellular signal–regulated kinase 1/2 (Mek1/2)–extracellular signal–regulated kinase 1/2 (Erk1/2)–activator protein 1 (AP-1), known collectively as the Ras-Mek1/2-Erk1/2-AP-1 pathway. Deficiency of RasGRP1 or inhibition of Mek1/2 activity drastically decreases TCR-induced mTOR activation, whereas constitutively active Ras or Mek1 promotes mTOR activation. Although constitutively active Akt promotes TCR-induced mTOR activation, such activation is attenuated by Mek1/2 inhibition. We demonstrated further that DAG kinases (DGKs) α and ζ, which terminate DAG-mediated signaling, synergistically inhibit TCR-induced mTOR activation by inhibiting the Ras-Mek1/2-Erk/12 pathway. These observations provide novel insights into the regulation of mTOR activation.</abstract><cop>Washington, DC</cop><pub>Elsevier Inc</pub><pmid>21310925</pmid><doi>10.1182/blood-2010-08-300731</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-4971
ispartof Blood, 2011-04, Vol.117 (15), p.4022-4031
issn 0006-4971
1528-0020
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3087529
source Elsevier ScienceDirect Journals
subjects Animals
Biological and medical sciences
Cell Line
Diacylglycerol Kinase - genetics
Diacylglycerol Kinase - metabolism
Extracellular Signal-Regulated MAP Kinases - metabolism
Hematologic and hematopoietic diseases
Immunobiology
Immunologic Memory - physiology
Lymphocyte Activation - physiology
MAP Kinase Kinase 1 - metabolism
MAP Kinase Kinase 2 - metabolism
MAP Kinase Signaling System - immunology
Medical sciences
Mice
Mice, Mutant Strains
Phosphatidylinositol 3-Kinases - metabolism
ras Proteins - metabolism
Receptors, Antigen, T-Cell - metabolism
T-Lymphocytes - enzymology
Thymus Gland - cytology
Thymus Gland - immunology
Thymus Gland - metabolism
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
Transcription Factor AP-1 - metabolism
title Negative regulation of mTOR activation by diacylglycerol kinases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20regulation%20of%20mTOR%20activation%20by%20diacylglycerol%20kinases&rft.jtitle=Blood&rft.au=Gorentla,%20Balachandra%20K.&rft.date=2011-04-14&rft.volume=117&rft.issue=15&rft.spage=4022&rft.epage=4031&rft.pages=4022-4031&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood-2010-08-300731&rft_dat=%3Cproquest_pubme%3E862270115%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-98dfab75c6589ea7a9c532d1f894a1c22d79710bce38f87457fd5ccc449e4cf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862270115&rft_id=info:pmid/21310925&rfr_iscdi=true