Loading…
Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen
We proposed to measure the metabolic rate of oxygen (MRO(2)) in small animals in vivo using a multimodal imaging system that combines laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) and spectral-domain optical coherence tomography (SD-OCT). We first tested the capability of the...
Saved in:
Published in: | Biomedical optics express 2011-04, Vol.2 (5), p.1359-1365 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We proposed to measure the metabolic rate of oxygen (MRO(2)) in small animals in vivo using a multimodal imaging system that combines laser-scanning optical-resolution photoacoustic microscopy (LSOR-PAM) and spectral-domain optical coherence tomography (SD-OCT). We first tested the capability of the multimodal system to measure flow rate in a phantom made of two capillary tubes of different diameters. We then demonstrated the capability of measuring MRO(2) by imaging two parallel vessels selected from the ear of a Swiss Webster mouse. The hemoglobin oxygen saturation (sO(2)) and the vessel diameter were measured by the LSOR-PAM and the blood flow velocity was measured by the SD-OCT, from which blood flow rate and MRO(2) were further calculated. The measured blood flow rates in the two vessels agreed with each other. |
---|---|
ISSN: | 2156-7085 2156-7085 |
DOI: | 10.1364/BOE.2.001359 |