Loading…
Co2+ Selectivity of Thermotoga maritima CorA and Its Inability to Regulate Mg2+ Homeostasis Present a New Class of CorA Proteins
CorA is a family of divalent cation transporters ubiquitously present in bacteria and archaea. Although CorA can transport both Mg2+ and Co2+ almost equally well, its main role has been suggested to be that of primary Mg2+ transporter of prokaryotes and hence the regulator of Mg2+ homeostasis. The r...
Saved in:
Published in: | The Journal of biological chemistry 2011-05, Vol.286 (18), p.16525-16532 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | CorA is a family of divalent cation transporters ubiquitously present in bacteria and archaea. Although CorA can transport both Mg2+ and Co2+ almost equally well, its main role has been suggested to be that of primary Mg2+ transporter of prokaryotes and hence the regulator of Mg2+ homeostasis. The reason is that the affinity of CorA for Co2+ is relatively low and thus considered non-physiological. Here, we show that Thermotoga maritima CorA (TmCorA) is incapable of regulating the Mg2+ homeostasis and therefore cannot be the primary Mg2+ transporter of T. maritima. Further, our in vivo experiments confirm that TmCorA is a highly selective Co2+ transporter, as it selects Co2+ over Mg2+ at >100 times lower concentrations. In addition, we present data that show TmCorA to be extremely thermostable in the presence of Co2+. Mg2+ could not stabilize the protein to the same extent, even at high concentrations. We also show that addition of Co2+, but not Mg2+, specifically induces structural changes to the protein. Altogether, these data show that TmCorA has the role of being the transporter of Co2+ but not Mg2+. The physiological relevance and requirements of Co2+ in T. maritima is discussed and highlighted. We suggest that CorA may have different roles in different organisms. Such functional diversity is presumably a reflection of minor, but important structural differences within the CorA family that regulate the gating, substrate selection, and transport. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M111.222166 |