Loading…
Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi
The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phe...
Saved in:
Published in: | Cell stem cell 2011-05, Vol.8 (5), p.580-593 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573 |
---|---|
cites | cdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573 |
container_end_page | 593 |
container_issue | 5 |
container_start_page | 580 |
container_title | Cell stem cell |
container_volume | 8 |
creator | Neumüller, Ralph A. Richter, Constance Fischer, Anja Novatchkova, Maria Neumüller, Klaus G. Knoblich, Juergen A. |
description | The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well.
► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells |
doi_str_mv | 10.1016/j.stem.2011.02.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3093620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590911001238</els_id><sourcerecordid>874184622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYNYbK1-AR8kL-LTrPkzmSQgwrJqFUqFdqGPIZPcabPMZNZktrLf3qy7VvvSwoWE5JeTe89B6A0lM0po82E1yxMMM0YonRFWij1DJ1RJUWkp5fOy17yuhCb6GL3MeUWIkJTIF-iYUVFrzukJuj6DOA5QXQcPeB5tv80h47HDV9B31SVE-GV7HCL-nMY8rm9Db_EFbFI5vCqf4wX0fcbtFi-TjfkGYnD48mIeXqGjzvYZXh_WU7T8-mW5-Fad_zj7vpifV07QZqoUEx6cFV55523nXE00pUJ7rhUvhGx9y4kQnHAloLasZUw0jfaKt7WQ_BR92suuN-0A3kGcSmtmncJg09aMNpiHNzHcmpvxznCiecNIEXh_EEjjzw3kyQwhuzKUjTBuslGypqpuGHuabESjhfijyfakK57lBN19P5SYXXJmZXbJmV1yhrBSO_m3_09y_-RvVAV4dwBsdrbvit8u5H9cXWwTTBXu456DYvtdgGSyCxAd-JDATcaP4bE-fgNOXrac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865695520</pqid></control><display><type>article</type><title>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Neumüller, Ralph A. ; Richter, Constance ; Fischer, Anja ; Novatchkova, Maria ; Neumüller, Klaus G. ; Knoblich, Juergen A.</creator><creatorcontrib>Neumüller, Ralph A. ; Richter, Constance ; Fischer, Anja ; Novatchkova, Maria ; Neumüller, Klaus G. ; Knoblich, Juergen A.</creatorcontrib><description>The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well.
► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2011.02.022</identifier><identifier>PMID: 21549331</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Alternative Splicing - genetics ; Animals ; Biological and medical sciences ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - genetics ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Cell Survival - genetics ; Cells, Cultured ; Chaperonin Containing TCP-1 - genetics ; Chaperonin Containing TCP-1 - metabolism ; Chromatin Assembly and Disassembly - genetics ; Computational Biology ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drosophila ; Drosophila - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genome-Wide Association Study ; High Mobility Group Proteins - genetics ; High Mobility Group Proteins - metabolism ; Larva - genetics ; Molecular and cellular biology ; Multigene Family - genetics ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Resource ; RNA, Messenger - analysis ; Spliceosomes - genetics ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Elongation Factors - genetics ; Transcriptional Elongation Factors - metabolism</subject><ispartof>Cell stem cell, 2011-05, Vol.8 (5), p.580-593</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 ELL & Excerpta Medica. 2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</citedby><cites>FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24159528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21549331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neumüller, Ralph A.</creatorcontrib><creatorcontrib>Richter, Constance</creatorcontrib><creatorcontrib>Fischer, Anja</creatorcontrib><creatorcontrib>Novatchkova, Maria</creatorcontrib><creatorcontrib>Neumüller, Klaus G.</creatorcontrib><creatorcontrib>Knoblich, Juergen A.</creatorcontrib><title>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well.
► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells</description><subject>Alternative Splicing - genetics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Cell Survival - genetics</subject><subject>Cells, Cultured</subject><subject>Chaperonin Containing TCP-1 - genetics</subject><subject>Chaperonin Containing TCP-1 - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>Computational Biology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome-Wide Association Study</subject><subject>High Mobility Group Proteins - genetics</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>Larva - genetics</subject><subject>Molecular and cellular biology</subject><subject>Multigene Family - genetics</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Resource</subject><subject>RNA, Messenger - analysis</subject><subject>Spliceosomes - genetics</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Elongation Factors - genetics</subject><subject>Transcriptional Elongation Factors - metabolism</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYNYbK1-AR8kL-LTrPkzmSQgwrJqFUqFdqGPIZPcabPMZNZktrLf3qy7VvvSwoWE5JeTe89B6A0lM0po82E1yxMMM0YonRFWij1DJ1RJUWkp5fOy17yuhCb6GL3MeUWIkJTIF-iYUVFrzukJuj6DOA5QXQcPeB5tv80h47HDV9B31SVE-GV7HCL-nMY8rm9Db_EFbFI5vCqf4wX0fcbtFi-TjfkGYnD48mIeXqGjzvYZXh_WU7T8-mW5-Fad_zj7vpifV07QZqoUEx6cFV55523nXE00pUJ7rhUvhGx9y4kQnHAloLasZUw0jfaKt7WQ_BR92suuN-0A3kGcSmtmncJg09aMNpiHNzHcmpvxznCiecNIEXh_EEjjzw3kyQwhuzKUjTBuslGypqpuGHuabESjhfijyfakK57lBN19P5SYXXJmZXbJmV1yhrBSO_m3_09y_-RvVAV4dwBsdrbvit8u5H9cXWwTTBXu456DYvtdgGSyCxAd-JDATcaP4bE-fgNOXrac</recordid><startdate>20110506</startdate><enddate>20110506</enddate><creator>Neumüller, Ralph A.</creator><creator>Richter, Constance</creator><creator>Fischer, Anja</creator><creator>Novatchkova, Maria</creator><creator>Neumüller, Klaus G.</creator><creator>Knoblich, Juergen A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110506</creationdate><title>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</title><author>Neumüller, Ralph A. ; Richter, Constance ; Fischer, Anja ; Novatchkova, Maria ; Neumüller, Klaus G. ; Knoblich, Juergen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative Splicing - genetics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Cell Survival - genetics</topic><topic>Cells, Cultured</topic><topic>Chaperonin Containing TCP-1 - genetics</topic><topic>Chaperonin Containing TCP-1 - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>Computational Biology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome-Wide Association Study</topic><topic>High Mobility Group Proteins - genetics</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>Larva - genetics</topic><topic>Molecular and cellular biology</topic><topic>Multigene Family - genetics</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Resource</topic><topic>RNA, Messenger - analysis</topic><topic>Spliceosomes - genetics</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Elongation Factors - genetics</topic><topic>Transcriptional Elongation Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumüller, Ralph A.</creatorcontrib><creatorcontrib>Richter, Constance</creatorcontrib><creatorcontrib>Fischer, Anja</creatorcontrib><creatorcontrib>Novatchkova, Maria</creatorcontrib><creatorcontrib>Neumüller, Klaus G.</creatorcontrib><creatorcontrib>Knoblich, Juergen A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumüller, Ralph A.</au><au>Richter, Constance</au><au>Fischer, Anja</au><au>Novatchkova, Maria</au><au>Neumüller, Klaus G.</au><au>Knoblich, Juergen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2011-05-06</date><risdate>2011</risdate><volume>8</volume><issue>5</issue><spage>580</spage><epage>593</epage><pages>580-593</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well.
► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>21549331</pmid><doi>10.1016/j.stem.2011.02.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2011-05, Vol.8 (5), p.580-593 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3093620 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | Alternative Splicing - genetics Animals Biological and medical sciences Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Differentiation - genetics Cell differentiation, maturation, development, hematopoiesis Cell physiology Cell Survival - genetics Cells, Cultured Chaperonin Containing TCP-1 - genetics Chaperonin Containing TCP-1 - metabolism Chromatin Assembly and Disassembly - genetics Computational Biology DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Drosophila Drosophila - genetics Drosophila Proteins - genetics Drosophila Proteins - metabolism Fundamental and applied biological sciences. Psychology Genome-Wide Association Study High Mobility Group Proteins - genetics High Mobility Group Proteins - metabolism Larva - genetics Molecular and cellular biology Multigene Family - genetics Neural Stem Cells - cytology Neural Stem Cells - metabolism Resource RNA, Messenger - analysis Spliceosomes - genetics Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors - genetics Transcription Factors - metabolism Transcriptional Elongation Factors - genetics Transcriptional Elongation Factors - metabolism |
title | Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20of%20Self-Renewal%20in%20Drosophila%20Neural%20Stem%20Cells%20by%20Transgenic%20RNAi&rft.jtitle=Cell%20stem%20cell&rft.au=Neum%C3%BCller,%20Ralph%C2%A0A.&rft.date=2011-05-06&rft.volume=8&rft.issue=5&rft.spage=580&rft.epage=593&rft.pages=580-593&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2011.02.022&rft_dat=%3Cproquest_pubme%3E874184622%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865695520&rft_id=info:pmid/21549331&rfr_iscdi=true |