Loading…

Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi

The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phe...

Full description

Saved in:
Bibliographic Details
Published in:Cell stem cell 2011-05, Vol.8 (5), p.580-593
Main Authors: Neumüller, Ralph A., Richter, Constance, Fischer, Anja, Novatchkova, Maria, Neumüller, Klaus G., Knoblich, Juergen A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573
cites cdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573
container_end_page 593
container_issue 5
container_start_page 580
container_title Cell stem cell
container_volume 8
creator Neumüller, Ralph A.
Richter, Constance
Fischer, Anja
Novatchkova, Maria
Neumüller, Klaus G.
Knoblich, Juergen A.
description The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well. ► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells
doi_str_mv 10.1016/j.stem.2011.02.022
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3093620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590911001238</els_id><sourcerecordid>874184622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxYNYbK1-AR8kL-LTrPkzmSQgwrJqFUqFdqGPIZPcabPMZNZktrLf3qy7VvvSwoWE5JeTe89B6A0lM0po82E1yxMMM0YonRFWij1DJ1RJUWkp5fOy17yuhCb6GL3MeUWIkJTIF-iYUVFrzukJuj6DOA5QXQcPeB5tv80h47HDV9B31SVE-GV7HCL-nMY8rm9Db_EFbFI5vCqf4wX0fcbtFi-TjfkGYnD48mIeXqGjzvYZXh_WU7T8-mW5-Fad_zj7vpifV07QZqoUEx6cFV55523nXE00pUJ7rhUvhGx9y4kQnHAloLasZUw0jfaKt7WQ_BR92suuN-0A3kGcSmtmncJg09aMNpiHNzHcmpvxznCiecNIEXh_EEjjzw3kyQwhuzKUjTBuslGypqpuGHuabESjhfijyfakK57lBN19P5SYXXJmZXbJmV1yhrBSO_m3_09y_-RvVAV4dwBsdrbvit8u5H9cXWwTTBXu456DYvtdgGSyCxAd-JDATcaP4bE-fgNOXrac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865695520</pqid></control><display><type>article</type><title>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Neumüller, Ralph A. ; Richter, Constance ; Fischer, Anja ; Novatchkova, Maria ; Neumüller, Klaus G. ; Knoblich, Juergen A.</creator><creatorcontrib>Neumüller, Ralph A. ; Richter, Constance ; Fischer, Anja ; Novatchkova, Maria ; Neumüller, Klaus G. ; Knoblich, Juergen A.</creatorcontrib><description>The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well. ► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2011.02.022</identifier><identifier>PMID: 21549331</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Alternative Splicing - genetics ; Animals ; Biological and medical sciences ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - genetics ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Cell Survival - genetics ; Cells, Cultured ; Chaperonin Containing TCP-1 - genetics ; Chaperonin Containing TCP-1 - metabolism ; Chromatin Assembly and Disassembly - genetics ; Computational Biology ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Drosophila ; Drosophila - genetics ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genome-Wide Association Study ; High Mobility Group Proteins - genetics ; High Mobility Group Proteins - metabolism ; Larva - genetics ; Molecular and cellular biology ; Multigene Family - genetics ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Resource ; RNA, Messenger - analysis ; Spliceosomes - genetics ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcriptional Elongation Factors - genetics ; Transcriptional Elongation Factors - metabolism</subject><ispartof>Cell stem cell, 2011-05, Vol.8 (5), p.580-593</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Elsevier Inc. All rights reserved.</rights><rights>2011 ELL &amp; Excerpta Medica. 2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</citedby><cites>FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24159528$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21549331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neumüller, Ralph A.</creatorcontrib><creatorcontrib>Richter, Constance</creatorcontrib><creatorcontrib>Fischer, Anja</creatorcontrib><creatorcontrib>Novatchkova, Maria</creatorcontrib><creatorcontrib>Neumüller, Klaus G.</creatorcontrib><creatorcontrib>Knoblich, Juergen A.</creatorcontrib><title>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well. ► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells</description><subject>Alternative Splicing - genetics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Cell Survival - genetics</subject><subject>Cells, Cultured</subject><subject>Chaperonin Containing TCP-1 - genetics</subject><subject>Chaperonin Containing TCP-1 - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>Computational Biology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - genetics</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genome-Wide Association Study</subject><subject>High Mobility Group Proteins - genetics</subject><subject>High Mobility Group Proteins - metabolism</subject><subject>Larva - genetics</subject><subject>Molecular and cellular biology</subject><subject>Multigene Family - genetics</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Resource</subject><subject>RNA, Messenger - analysis</subject><subject>Spliceosomes - genetics</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional Elongation Factors - genetics</subject><subject>Transcriptional Elongation Factors - metabolism</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkV9rFDEUxYNYbK1-AR8kL-LTrPkzmSQgwrJqFUqFdqGPIZPcabPMZNZktrLf3qy7VvvSwoWE5JeTe89B6A0lM0po82E1yxMMM0YonRFWij1DJ1RJUWkp5fOy17yuhCb6GL3MeUWIkJTIF-iYUVFrzukJuj6DOA5QXQcPeB5tv80h47HDV9B31SVE-GV7HCL-nMY8rm9Db_EFbFI5vCqf4wX0fcbtFi-TjfkGYnD48mIeXqGjzvYZXh_WU7T8-mW5-Fad_zj7vpifV07QZqoUEx6cFV55523nXE00pUJ7rhUvhGx9y4kQnHAloLasZUw0jfaKt7WQ_BR92suuN-0A3kGcSmtmncJg09aMNpiHNzHcmpvxznCiecNIEXh_EEjjzw3kyQwhuzKUjTBuslGypqpuGHuabESjhfijyfakK57lBN19P5SYXXJmZXbJmV1yhrBSO_m3_09y_-RvVAV4dwBsdrbvit8u5H9cXWwTTBXu456DYvtdgGSyCxAd-JDATcaP4bE-fgNOXrac</recordid><startdate>20110506</startdate><enddate>20110506</enddate><creator>Neumüller, Ralph A.</creator><creator>Richter, Constance</creator><creator>Fischer, Anja</creator><creator>Novatchkova, Maria</creator><creator>Neumüller, Klaus G.</creator><creator>Knoblich, Juergen A.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20110506</creationdate><title>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</title><author>Neumüller, Ralph A. ; Richter, Constance ; Fischer, Anja ; Novatchkova, Maria ; Neumüller, Klaus G. ; Knoblich, Juergen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alternative Splicing - genetics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Cell Survival - genetics</topic><topic>Cells, Cultured</topic><topic>Chaperonin Containing TCP-1 - genetics</topic><topic>Chaperonin Containing TCP-1 - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>Computational Biology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - genetics</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genome-Wide Association Study</topic><topic>High Mobility Group Proteins - genetics</topic><topic>High Mobility Group Proteins - metabolism</topic><topic>Larva - genetics</topic><topic>Molecular and cellular biology</topic><topic>Multigene Family - genetics</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Resource</topic><topic>RNA, Messenger - analysis</topic><topic>Spliceosomes - genetics</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional Elongation Factors - genetics</topic><topic>Transcriptional Elongation Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumüller, Ralph A.</creatorcontrib><creatorcontrib>Richter, Constance</creatorcontrib><creatorcontrib>Fischer, Anja</creatorcontrib><creatorcontrib>Novatchkova, Maria</creatorcontrib><creatorcontrib>Neumüller, Klaus G.</creatorcontrib><creatorcontrib>Knoblich, Juergen A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumüller, Ralph A.</au><au>Richter, Constance</au><au>Fischer, Anja</au><au>Novatchkova, Maria</au><au>Neumüller, Klaus G.</au><au>Knoblich, Juergen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2011-05-06</date><risdate>2011</risdate><volume>8</volume><issue>5</issue><spage>580</spage><epage>593</epage><pages>580-593</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well. ► Genome-wide RNAi screen finds 620 genes regulating Drosophila neural stem cells ► A set of transcriptional regulators is essential for neural stem cell self-renewal ► Brm complex, spliceosome, and TRiC/CCT-complex regulate neural differentiation ► Alternative splicing and transcriptional elongation are required in neural stem cells</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>21549331</pmid><doi>10.1016/j.stem.2011.02.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2011-05, Vol.8 (5), p.580-593
issn 1934-5909
1875-9777
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3093620
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Alternative Splicing - genetics
Animals
Biological and medical sciences
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Differentiation - genetics
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Cell Survival - genetics
Cells, Cultured
Chaperonin Containing TCP-1 - genetics
Chaperonin Containing TCP-1 - metabolism
Chromatin Assembly and Disassembly - genetics
Computational Biology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Drosophila
Drosophila - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Fundamental and applied biological sciences. Psychology
Genome-Wide Association Study
High Mobility Group Proteins - genetics
High Mobility Group Proteins - metabolism
Larva - genetics
Molecular and cellular biology
Multigene Family - genetics
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Resource
RNA, Messenger - analysis
Spliceosomes - genetics
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors - genetics
Transcription Factors - metabolism
Transcriptional Elongation Factors - genetics
Transcriptional Elongation Factors - metabolism
title Genome-Wide Analysis of Self-Renewal in Drosophila Neural Stem Cells by Transgenic RNAi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20of%20Self-Renewal%20in%20Drosophila%20Neural%20Stem%20Cells%20by%20Transgenic%20RNAi&rft.jtitle=Cell%20stem%20cell&rft.au=Neum%C3%BCller,%20Ralph%C2%A0A.&rft.date=2011-05-06&rft.volume=8&rft.issue=5&rft.spage=580&rft.epage=593&rft.pages=580-593&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2011.02.022&rft_dat=%3Cproquest_pubme%3E874184622%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-825deca5d8dcdafcc4091159d39835167bdb305530385e4a2b225669d83b4573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=865695520&rft_id=info:pmid/21549331&rfr_iscdi=true