Loading…

Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity

Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evo...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2011-04, Vol.30 (7), p.1302-1310
Main Authors: Martinez-Rucobo, Fuensanta W, Sainsbury, Sarah, Cheung, Alan CM, Cramer, Patrick
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793
cites
container_end_page 1310
container_issue 7
container_start_page 1302
container_title The EMBO journal
container_volume 30
creator Martinez-Rucobo, Fuensanta W
Sainsbury, Sarah
Cheung, Alan CM
Cramer, Patrick
description Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors. Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.
doi_str_mv 10.1038/emboj.2011.64
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3094117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>860881491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEoqVw5IoCF07ZemLHdi5I26osrEqRFhASF8txJl0vSRzsZOn-9yTdsnwIiZMtze-9Gc28KHoKZAaEylNsCreZpQRgxtm96BgYJ0lKRHY_OiYph4SBzI-iRyFsCCGZFPAwOkqBSi5BHEdm7s3a9mj6wWPsqrhfY7y6msedq3cNeh0w-dD17DSLjWu6Gm9i3ZZxoYMNEz60dos-6DruvW6D8bbrrWvjzjuDIdit7XePoweVrgM-uXtPok-vLz6ev0ku3y_ens8vE8PTlCUZLYBrghwlVqmhoiglBV5BVdIsz0XJSqJFIQsCtKhMakzFSlYBl4VGJnJ6Er3a-3ZD0WBpsB1nqlXnbaP9Tjlt1Z-V1q7VtdsqSnIGIEaDl3cG3n0bMPSqscFgXesW3RBUTlLKBM_Zf0nJiZTAchjJF3-RGzf4dtzDBI2H4Nlk9-z3yQ8j_7zTCGR74LutcXeoA1FTCNRtCNQUAsWZunh3tpz-fDKe7XVhlLTX6H91_6d2FDzfC1o9JeLQ6ZY6mCZ7xoYebw6I9l8VF1Rk6vPVQhH4sliuVlIt6Q86dNFr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860213654</pqid></control><display><type>article</type><title>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</title><source>Open Access: PubMed Central</source><creator>Martinez-Rucobo, Fuensanta W ; Sainsbury, Sarah ; Cheung, Alan CM ; Cramer, Patrick</creator><creatorcontrib>Martinez-Rucobo, Fuensanta W ; Sainsbury, Sarah ; Cheung, Alan CM ; Cramer, Patrick</creatorcontrib><description>Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors. Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2011.64</identifier><identifier>PMID: 21386817</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Amino Acid Sequence ; Cells ; Chromosomal Proteins, Non-Histone - chemistry ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases - chemistry ; EMBO09 ; EMBO40 ; gene regulation ; gene transcription ; Genes ; Models, Molecular ; Molecular Sequence Data ; multiprotein complex structure ; Nucleic acids ; Polymerization ; Protein Binding ; Protein Structure, Quaternary ; Pyrococcus furiosus - chemistry ; Pyrococcus furiosus - enzymology ; Repressor Proteins - chemistry ; Ribonucleic acid ; RNA ; RNA polymerase elongation ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - enzymology ; Sequence Homology, Amino Acid ; transcription elongation factor ; Transcriptional Elongation Factors - chemistry ; Yeasts</subject><ispartof>The EMBO journal, 2011-04, Vol.30 (7), p.1302-1310</ispartof><rights>European Molecular Biology Organization 2011</rights><rights>Copyright © 2011 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 6, 2011</rights><rights>Copyright © 2011, European Molecular Biology Organization 2011 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094117/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094117/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21386817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Rucobo, Fuensanta W</creatorcontrib><creatorcontrib>Sainsbury, Sarah</creatorcontrib><creatorcontrib>Cheung, Alan CM</creatorcontrib><creatorcontrib>Cramer, Patrick</creatorcontrib><title>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors. Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.</description><subject>Amino Acid Sequence</subject><subject>Cells</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>EMBO09</subject><subject>EMBO40</subject><subject>gene regulation</subject><subject>gene transcription</subject><subject>Genes</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>multiprotein complex structure</subject><subject>Nucleic acids</subject><subject>Polymerization</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Pyrococcus furiosus - chemistry</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Repressor Proteins - chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase elongation</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Sequence Homology, Amino Acid</subject><subject>transcription elongation factor</subject><subject>Transcriptional Elongation Factors - chemistry</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFks1v1DAQxSMEoqVw5IoCF07ZemLHdi5I26osrEqRFhASF8txJl0vSRzsZOn-9yTdsnwIiZMtze-9Gc28KHoKZAaEylNsCreZpQRgxtm96BgYJ0lKRHY_OiYph4SBzI-iRyFsCCGZFPAwOkqBSi5BHEdm7s3a9mj6wWPsqrhfY7y6msedq3cNeh0w-dD17DSLjWu6Gm9i3ZZxoYMNEz60dos-6DruvW6D8bbrrWvjzjuDIdit7XePoweVrgM-uXtPok-vLz6ev0ku3y_ens8vE8PTlCUZLYBrghwlVqmhoiglBV5BVdIsz0XJSqJFIQsCtKhMakzFSlYBl4VGJnJ6Er3a-3ZD0WBpsB1nqlXnbaP9Tjlt1Z-V1q7VtdsqSnIGIEaDl3cG3n0bMPSqscFgXesW3RBUTlLKBM_Zf0nJiZTAchjJF3-RGzf4dtzDBI2H4Nlk9-z3yQ8j_7zTCGR74LutcXeoA1FTCNRtCNQUAsWZunh3tpz-fDKe7XVhlLTX6H91_6d2FDzfC1o9JeLQ6ZY6mCZ7xoYebw6I9l8VF1Rk6vPVQhH4sliuVlIt6Q86dNFr</recordid><startdate>20110406</startdate><enddate>20110406</enddate><creator>Martinez-Rucobo, Fuensanta W</creator><creator>Sainsbury, Sarah</creator><creator>Cheung, Alan CM</creator><creator>Cramer, Patrick</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110406</creationdate><title>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</title><author>Martinez-Rucobo, Fuensanta W ; Sainsbury, Sarah ; Cheung, Alan CM ; Cramer, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Cells</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>EMBO09</topic><topic>EMBO40</topic><topic>gene regulation</topic><topic>gene transcription</topic><topic>Genes</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>multiprotein complex structure</topic><topic>Nucleic acids</topic><topic>Polymerization</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Pyrococcus furiosus - chemistry</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Repressor Proteins - chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase elongation</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Sequence Homology, Amino Acid</topic><topic>transcription elongation factor</topic><topic>Transcriptional Elongation Factors - chemistry</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Rucobo, Fuensanta W</creatorcontrib><creatorcontrib>Sainsbury, Sarah</creatorcontrib><creatorcontrib>Cheung, Alan CM</creatorcontrib><creatorcontrib>Cramer, Patrick</creatorcontrib><collection>Istex</collection><collection>SpringerOpen</collection><collection>Wiley_OA刊</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Rucobo, Fuensanta W</au><au>Sainsbury, Sarah</au><au>Cheung, Alan CM</au><au>Cramer, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2011-04-06</date><risdate>2011</risdate><volume>30</volume><issue>7</issue><spage>1302</spage><epage>1310</epage><pages>1302-1310</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors. Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>21386817</pmid><doi>10.1038/emboj.2011.64</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2011-04, Vol.30 (7), p.1302-1310
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3094117
source Open Access: PubMed Central
subjects Amino Acid Sequence
Cells
Chromosomal Proteins, Non-Histone - chemistry
Crystallography, X-Ray
DNA-Directed RNA Polymerases - chemistry
EMBO09
EMBO40
gene regulation
gene transcription
Genes
Models, Molecular
Molecular Sequence Data
multiprotein complex structure
Nucleic acids
Polymerization
Protein Binding
Protein Structure, Quaternary
Pyrococcus furiosus - chemistry
Pyrococcus furiosus - enzymology
Repressor Proteins - chemistry
Ribonucleic acid
RNA
RNA polymerase elongation
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - enzymology
Sequence Homology, Amino Acid
transcription elongation factor
Transcriptional Elongation Factors - chemistry
Yeasts
title Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20of%20the%20RNA%20polymerase-Spt4/5%20complex%20and%20basis%20of%20universal%20transcription%20processivity&rft.jtitle=The%20EMBO%20journal&rft.au=Martinez-Rucobo,%20Fuensanta%20W&rft.date=2011-04-06&rft.volume=30&rft.issue=7&rft.spage=1302&rft.epage=1310&rft.pages=1302-1310&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2011.64&rft_dat=%3Cproquest_pubme%3E860881491%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=860213654&rft_id=info:pmid/21386817&rfr_iscdi=true