Loading…
Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity
Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evo...
Saved in:
Published in: | The EMBO journal 2011-04, Vol.30 (7), p.1302-1310 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793 |
---|---|
cites | |
container_end_page | 1310 |
container_issue | 7 |
container_start_page | 1302 |
container_title | The EMBO journal |
container_volume | 30 |
creator | Martinez-Rucobo, Fuensanta W Sainsbury, Sarah Cheung, Alan CM Cramer, Patrick |
description | Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.
Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase. |
doi_str_mv | 10.1038/emboj.2011.64 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3094117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>860881491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793</originalsourceid><addsrcrecordid>eNqFks1v1DAQxSMEoqVw5IoCF07ZemLHdi5I26osrEqRFhASF8txJl0vSRzsZOn-9yTdsnwIiZMtze-9Gc28KHoKZAaEylNsCreZpQRgxtm96BgYJ0lKRHY_OiYph4SBzI-iRyFsCCGZFPAwOkqBSi5BHEdm7s3a9mj6wWPsqrhfY7y6msedq3cNeh0w-dD17DSLjWu6Gm9i3ZZxoYMNEz60dos-6DruvW6D8bbrrWvjzjuDIdit7XePoweVrgM-uXtPok-vLz6ev0ku3y_ens8vE8PTlCUZLYBrghwlVqmhoiglBV5BVdIsz0XJSqJFIQsCtKhMakzFSlYBl4VGJnJ6Er3a-3ZD0WBpsB1nqlXnbaP9Tjlt1Z-V1q7VtdsqSnIGIEaDl3cG3n0bMPSqscFgXesW3RBUTlLKBM_Zf0nJiZTAchjJF3-RGzf4dtzDBI2H4Nlk9-z3yQ8j_7zTCGR74LutcXeoA1FTCNRtCNQUAsWZunh3tpz-fDKe7XVhlLTX6H91_6d2FDzfC1o9JeLQ6ZY6mCZ7xoYebw6I9l8VF1Rk6vPVQhH4sliuVlIt6Q86dNFr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>860213654</pqid></control><display><type>article</type><title>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</title><source>Open Access: PubMed Central</source><creator>Martinez-Rucobo, Fuensanta W ; Sainsbury, Sarah ; Cheung, Alan CM ; Cramer, Patrick</creator><creatorcontrib>Martinez-Rucobo, Fuensanta W ; Sainsbury, Sarah ; Cheung, Alan CM ; Cramer, Patrick</creatorcontrib><description>Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.
Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2011.64</identifier><identifier>PMID: 21386817</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amino Acid Sequence ; Cells ; Chromosomal Proteins, Non-Histone - chemistry ; Crystallography, X-Ray ; DNA-Directed RNA Polymerases - chemistry ; EMBO09 ; EMBO40 ; gene regulation ; gene transcription ; Genes ; Models, Molecular ; Molecular Sequence Data ; multiprotein complex structure ; Nucleic acids ; Polymerization ; Protein Binding ; Protein Structure, Quaternary ; Pyrococcus furiosus - chemistry ; Pyrococcus furiosus - enzymology ; Repressor Proteins - chemistry ; Ribonucleic acid ; RNA ; RNA polymerase elongation ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - enzymology ; Sequence Homology, Amino Acid ; transcription elongation factor ; Transcriptional Elongation Factors - chemistry ; Yeasts</subject><ispartof>The EMBO journal, 2011-04, Vol.30 (7), p.1302-1310</ispartof><rights>European Molecular Biology Organization 2011</rights><rights>Copyright © 2011 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Apr 6, 2011</rights><rights>Copyright © 2011, European Molecular Biology Organization 2011 European Molecular Biology Organization</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094117/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094117/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21386817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez-Rucobo, Fuensanta W</creatorcontrib><creatorcontrib>Sainsbury, Sarah</creatorcontrib><creatorcontrib>Cheung, Alan CM</creatorcontrib><creatorcontrib>Cramer, Patrick</creatorcontrib><title>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.
Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.</description><subject>Amino Acid Sequence</subject><subject>Cells</subject><subject>Chromosomal Proteins, Non-Histone - chemistry</subject><subject>Crystallography, X-Ray</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>EMBO09</subject><subject>EMBO40</subject><subject>gene regulation</subject><subject>gene transcription</subject><subject>Genes</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>multiprotein complex structure</subject><subject>Nucleic acids</subject><subject>Polymerization</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Pyrococcus furiosus - chemistry</subject><subject>Pyrococcus furiosus - enzymology</subject><subject>Repressor Proteins - chemistry</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase elongation</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Sequence Homology, Amino Acid</subject><subject>transcription elongation factor</subject><subject>Transcriptional Elongation Factors - chemistry</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFks1v1DAQxSMEoqVw5IoCF07ZemLHdi5I26osrEqRFhASF8txJl0vSRzsZOn-9yTdsnwIiZMtze-9Gc28KHoKZAaEylNsCreZpQRgxtm96BgYJ0lKRHY_OiYph4SBzI-iRyFsCCGZFPAwOkqBSi5BHEdm7s3a9mj6wWPsqrhfY7y6msedq3cNeh0w-dD17DSLjWu6Gm9i3ZZxoYMNEz60dos-6DruvW6D8bbrrWvjzjuDIdit7XePoweVrgM-uXtPok-vLz6ev0ku3y_ens8vE8PTlCUZLYBrghwlVqmhoiglBV5BVdIsz0XJSqJFIQsCtKhMakzFSlYBl4VGJnJ6Er3a-3ZD0WBpsB1nqlXnbaP9Tjlt1Z-V1q7VtdsqSnIGIEaDl3cG3n0bMPSqscFgXesW3RBUTlLKBM_Zf0nJiZTAchjJF3-RGzf4dtzDBI2H4Nlk9-z3yQ8j_7zTCGR74LutcXeoA1FTCNRtCNQUAsWZunh3tpz-fDKe7XVhlLTX6H91_6d2FDzfC1o9JeLQ6ZY6mCZ7xoYebw6I9l8VF1Rk6vPVQhH4sliuVlIt6Q86dNFr</recordid><startdate>20110406</startdate><enddate>20110406</enddate><creator>Martinez-Rucobo, Fuensanta W</creator><creator>Sainsbury, Sarah</creator><creator>Cheung, Alan CM</creator><creator>Cramer, Patrick</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110406</creationdate><title>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</title><author>Martinez-Rucobo, Fuensanta W ; Sainsbury, Sarah ; Cheung, Alan CM ; Cramer, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Cells</topic><topic>Chromosomal Proteins, Non-Histone - chemistry</topic><topic>Crystallography, X-Ray</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>EMBO09</topic><topic>EMBO40</topic><topic>gene regulation</topic><topic>gene transcription</topic><topic>Genes</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>multiprotein complex structure</topic><topic>Nucleic acids</topic><topic>Polymerization</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Pyrococcus furiosus - chemistry</topic><topic>Pyrococcus furiosus - enzymology</topic><topic>Repressor Proteins - chemistry</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase elongation</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Sequence Homology, Amino Acid</topic><topic>transcription elongation factor</topic><topic>Transcriptional Elongation Factors - chemistry</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez-Rucobo, Fuensanta W</creatorcontrib><creatorcontrib>Sainsbury, Sarah</creatorcontrib><creatorcontrib>Cheung, Alan CM</creatorcontrib><creatorcontrib>Cramer, Patrick</creatorcontrib><collection>Istex</collection><collection>SpringerOpen</collection><collection>Wiley_OA刊</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez-Rucobo, Fuensanta W</au><au>Sainsbury, Sarah</au><au>Cheung, Alan CM</au><au>Cramer, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2011-04-06</date><risdate>2011</risdate><volume>30</volume><issue>7</issue><spage>1302</spage><epage>1310</epage><pages>1302-1310</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Related RNA polymerases (RNAPs) carry out cellular gene transcription in all three kingdoms of life. The universal conservation of the transcription machinery extends to a single RNAP‐associated factor, Spt5 (or NusG in bacteria), which renders RNAP processive and may have arisen early to permit evolution of long genes. Spt5 associates with Spt4 to form the Spt4/5 heterodimer. Here, we present the crystal structure of archaeal Spt4/5 bound to the RNAP clamp domain, which forms one side of the RNAP active centre cleft. The structure revealed a conserved Spt5–RNAP interface and enabled modelling of complexes of Spt4/5 counterparts with RNAPs from all kingdoms of life, and of the complete yeast RNAP II elongation complex with bound Spt4/5. The N‐terminal NGN domain of Spt5/NusG closes the RNAP active centre cleft to lock nucleic acids and render the elongation complex stable and processive. The C‐terminal KOW1 domain is mobile, but its location is restricted to a region between the RNAP clamp and wall above the RNA exit tunnel, where it may interact with RNA and/or other factors.
Spt5 and NusG play a conserved role in stimulating RNA polymerase II transcription elongation and processivity. Here, the crystal structure of Spt4/5 bound to the RNA polymerase clamp domain reveals that the factor binds above DNA and RNA in the active centre cleft preventing premature dissociation of the polymerase.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>21386817</pmid><doi>10.1038/emboj.2011.64</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2011-04, Vol.30 (7), p.1302-1310 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3094117 |
source | Open Access: PubMed Central |
subjects | Amino Acid Sequence Cells Chromosomal Proteins, Non-Histone - chemistry Crystallography, X-Ray DNA-Directed RNA Polymerases - chemistry EMBO09 EMBO40 gene regulation gene transcription Genes Models, Molecular Molecular Sequence Data multiprotein complex structure Nucleic acids Polymerization Protein Binding Protein Structure, Quaternary Pyrococcus furiosus - chemistry Pyrococcus furiosus - enzymology Repressor Proteins - chemistry Ribonucleic acid RNA RNA polymerase elongation Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - enzymology Sequence Homology, Amino Acid transcription elongation factor Transcriptional Elongation Factors - chemistry Yeasts |
title | Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecture%20of%20the%20RNA%20polymerase-Spt4/5%20complex%20and%20basis%20of%20universal%20transcription%20processivity&rft.jtitle=The%20EMBO%20journal&rft.au=Martinez-Rucobo,%20Fuensanta%20W&rft.date=2011-04-06&rft.volume=30&rft.issue=7&rft.spage=1302&rft.epage=1310&rft.pages=1302-1310&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2011.64&rft_dat=%3Cproquest_pubme%3E860881491%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6224-53b16a0e6e8ef2c37bd8316f1fd35997d4d0a7b8b013bfc2ccf4d4f168bae4793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=860213654&rft_id=info:pmid/21386817&rfr_iscdi=true |