Loading…

Secondary Metabolites of Pseudomonas fluorescens CHA0 Drive Complex Non-Trophic Interactions with Bacterivorous Nematodes

Non-trophic interactions are increasingly recognised as a key parameter of predator-prey interactions. In soil, predation by bacterivorous nematodes is a major selective pressure shaping soil bacterial communities, and many bacteria have evolved defence mechanisms such as toxicity. In this study, we...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2011-05, Vol.61 (4), p.853-859
Main Authors: Neidig, Nina, Paul, Rüdiger J., Scheu, Stefan, Jousset, Alexandre
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Non-trophic interactions are increasingly recognised as a key parameter of predator-prey interactions. In soil, predation by bacterivorous nematodes is a major selective pressure shaping soil bacterial communities, and many bacteria have evolved defence mechanisms such as toxicity. In this study, we show that extracellular secondary metabolites produced by the model soil bacterium Pseudomonas fluorescens CHA0 function as a complex defence strategy against bacterivorous nematodes. Using a collection of functional mutants lacking genes for the biosynthesis of one or several extracellular metabolites, we evaluated the impact of bacterial secondary metabolites on the survival and chemotactic behaviour of the nematode Caenorhabditis elegans. Additionally, we followed up the stress status of the nematodes by measuring the activation of the abnormal DAuer Formation (DAF) stress cascade. All studied secondary metabolites contributed to the toxicity of the bacteria, with hydrogen cyanide efficiently repelling the nematodes, and both hydrogen cyanide and 2,4-DAPG functioning as nematicides. Moreover, these metabolites elicited the DAF stress response cascade of elegans, showing that they affect nematode physiology already at sublethal concentrations. The results suggest that bacterial secondary metabolites responsible for the suppression of plant pathogens strongly inhibit bacterivorous nematodes and thus likely contribute to the resistance of bacteria against predators in soil.
ISSN:0095-3628
1432-184X
DOI:10.1007/s00248-011-9821-z