Loading…

Microbial community structure across the tree of life in the extreme Río Tinto

Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domai...

Full description

Saved in:
Bibliographic Details
Published in:The ISME Journal 2011-01, Vol.5 (1), p.42-50
Main Authors: Amaral-Zettler, Linda A, Zettler, Erik R, Theroux, Susanna M, Palacios, Carmen, Aguilera, Angeles, Amils, Ricardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3
cites cdi_FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3
container_end_page 50
container_issue 1
container_start_page 42
container_title The ISME Journal
container_volume 5
creator Amaral-Zettler, Linda A
Zettler, Erik R
Theroux, Susanna M
Palacios, Carmen
Aguilera, Angeles
Amils, Ricardo
description Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domains of life, because diversity there is low and almost exclusively microbial. Despite improvements in high-throughput DNA sequencing, environmental biodiversity studies that use molecular metrics and consider entire ecosystems are rare. These studies can be prohibitively expensive if domains are considered separately, and differences in copy number of eukaryotic ribosomal RNA genes can bias estimates of relative abundances of phylotypes recovered. In this study we have overcome these barriers (1) by targeting all three domains in a single polymerase chain reaction amplification and (2) by using a replicated sampling design that allows for incidence-based methods to extract measures of richness and carry out downstream analyses that address community structuring effects. Our work showed that combined bacterial and archaeal richness is an order of magnitude higher than eukaryotic richness. We also found that eukaryotic richness was highest at the most extreme sites, whereas combined bacterial and archaeal richness was highest at less extreme sites. Quantitative community phylogenetics showed abiotic forces to be primarily responsible for shaping the RT community structure. Canonical correspondence analysis revealed co-occurrence of obligate symbionts and their putative hosts that may contribute to biotic forces shaping community structure and may further provide a possible mechanism for persistence of certain low-abundance bacteria encountered in the RT.
doi_str_mv 10.1038/ismej.2010.101
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>904481348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3</originalsourceid><addsrcrecordid>eNqFks9rFTEQx4MotlavHiXoQXp4r_m1SfYilKJt4ZWC1HPI5mX78thNapIt9o_yr_AfM7vbPmqheEpm5jPfGWYGgPcYLTGi8sil3m6XBE02fgH2sajwQlCBXu7-nOyBNyltEaoE5-I12COIUyyR3AeXF87E0DjdQRP6fvAu38GU42DyEC3UJZgSzBsLc7QWhhZ2rrXQ-clnfxVvb-H3P78DvHI-h7fgVau7ZN_dvwfgx7evVydni9Xl6fnJ8WphOOZ5QTSpkcZrzWRjKKnrVkhT2rWNkXptqGwN10RSKhjlrOEVtojIWrOqwliShh6AL7PuzdD0dm2sz1F36ia6Xsc7FbRT_0a826jrcKsoRlUZQhE4nAU2T9LOjldq9CEmCJNc3uLCfr4vFsPPwaasepeM7TrtbRiSqhFjElMm_0tKgkSNOGeF_PSE3IYh-jIzhRERNZWc80ItZ2raQ7TtrlWM1HgAajoANR5AscdWPzyeyw5_2HgBjmYglZC_tvFx3WckP84ZXo83sZOcsJEaob-QiMdo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027938666</pqid></control><display><type>article</type><title>Microbial community structure across the tree of life in the extreme Río Tinto</title><source>NCBI_PubMed Central(免费)</source><source>Open Access: Oxford University Press Open Journals</source><creator>Amaral-Zettler, Linda A ; Zettler, Erik R ; Theroux, Susanna M ; Palacios, Carmen ; Aguilera, Angeles ; Amils, Ricardo</creator><creatorcontrib>Amaral-Zettler, Linda A ; Zettler, Erik R ; Theroux, Susanna M ; Palacios, Carmen ; Aguilera, Angeles ; Amils, Ricardo</creatorcontrib><description>Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domains of life, because diversity there is low and almost exclusively microbial. Despite improvements in high-throughput DNA sequencing, environmental biodiversity studies that use molecular metrics and consider entire ecosystems are rare. These studies can be prohibitively expensive if domains are considered separately, and differences in copy number of eukaryotic ribosomal RNA genes can bias estimates of relative abundances of phylotypes recovered. In this study we have overcome these barriers (1) by targeting all three domains in a single polymerase chain reaction amplification and (2) by using a replicated sampling design that allows for incidence-based methods to extract measures of richness and carry out downstream analyses that address community structuring effects. Our work showed that combined bacterial and archaeal richness is an order of magnitude higher than eukaryotic richness. We also found that eukaryotic richness was highest at the most extreme sites, whereas combined bacterial and archaeal richness was highest at less extreme sites. Quantitative community phylogenetics showed abiotic forces to be primarily responsible for shaping the RT community structure. Canonical correspondence analysis revealed co-occurrence of obligate symbionts and their putative hosts that may contribute to biotic forces shaping community structure and may further provide a possible mechanism for persistence of certain low-abundance bacteria encountered in the RT.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2010.101</identifier><identifier>PMID: 20631808</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/181/757 ; 631/326/2565/547 ; Archaea - classification ; Archaea - genetics ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Biodiversity ; Biomedical and Life Sciences ; Biota ; Community structure ; Deoxyribonucleic acid ; DNA ; Ecology ; Ecosystems ; Environment ; Eukaryota - classification ; Eukaryota - genetics ; Evolutionary Biology ; Genes, rRNA - genetics ; Heavy metals ; Life Sciences ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Original ; original-article ; Rivers ; Spain</subject><ispartof>The ISME Journal, 2011-01, Vol.5 (1), p.42-50</ispartof><rights>International Society for Microbial Ecology 2011</rights><rights>Copyright Nature Publishing Group Jan 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3</citedby><cites>FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3</cites><orcidid>0000-0002-4050-9464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105667/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105667/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20631808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04724868$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Amaral-Zettler, Linda A</creatorcontrib><creatorcontrib>Zettler, Erik R</creatorcontrib><creatorcontrib>Theroux, Susanna M</creatorcontrib><creatorcontrib>Palacios, Carmen</creatorcontrib><creatorcontrib>Aguilera, Angeles</creatorcontrib><creatorcontrib>Amils, Ricardo</creatorcontrib><title>Microbial community structure across the tree of life in the extreme Río Tinto</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domains of life, because diversity there is low and almost exclusively microbial. Despite improvements in high-throughput DNA sequencing, environmental biodiversity studies that use molecular metrics and consider entire ecosystems are rare. These studies can be prohibitively expensive if domains are considered separately, and differences in copy number of eukaryotic ribosomal RNA genes can bias estimates of relative abundances of phylotypes recovered. In this study we have overcome these barriers (1) by targeting all three domains in a single polymerase chain reaction amplification and (2) by using a replicated sampling design that allows for incidence-based methods to extract measures of richness and carry out downstream analyses that address community structuring effects. Our work showed that combined bacterial and archaeal richness is an order of magnitude higher than eukaryotic richness. We also found that eukaryotic richness was highest at the most extreme sites, whereas combined bacterial and archaeal richness was highest at less extreme sites. Quantitative community phylogenetics showed abiotic forces to be primarily responsible for shaping the RT community structure. Canonical correspondence analysis revealed co-occurrence of obligate symbionts and their putative hosts that may contribute to biotic forces shaping community structure and may further provide a possible mechanism for persistence of certain low-abundance bacteria encountered in the RT.</description><subject>631/181/757</subject><subject>631/326/2565/547</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Community structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Ecology</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Eukaryota - classification</subject><subject>Eukaryota - genetics</subject><subject>Evolutionary Biology</subject><subject>Genes, rRNA - genetics</subject><subject>Heavy metals</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Original</subject><subject>original-article</subject><subject>Rivers</subject><subject>Spain</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFks9rFTEQx4MotlavHiXoQXp4r_m1SfYilKJt4ZWC1HPI5mX78thNapIt9o_yr_AfM7vbPmqheEpm5jPfGWYGgPcYLTGi8sil3m6XBE02fgH2sajwQlCBXu7-nOyBNyltEaoE5-I12COIUyyR3AeXF87E0DjdQRP6fvAu38GU42DyEC3UJZgSzBsLc7QWhhZ2rrXQ-clnfxVvb-H3P78DvHI-h7fgVau7ZN_dvwfgx7evVydni9Xl6fnJ8WphOOZ5QTSpkcZrzWRjKKnrVkhT2rWNkXptqGwN10RSKhjlrOEVtojIWrOqwliShh6AL7PuzdD0dm2sz1F36ia6Xsc7FbRT_0a826jrcKsoRlUZQhE4nAU2T9LOjldq9CEmCJNc3uLCfr4vFsPPwaasepeM7TrtbRiSqhFjElMm_0tKgkSNOGeF_PSE3IYh-jIzhRERNZWc80ItZ2raQ7TtrlWM1HgAajoANR5AscdWPzyeyw5_2HgBjmYglZC_tvFx3WckP84ZXo83sZOcsJEaob-QiMdo</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Amaral-Zettler, Linda A</creator><creator>Zettler, Erik R</creator><creator>Theroux, Susanna M</creator><creator>Palacios, Carmen</creator><creator>Aguilera, Angeles</creator><creator>Amils, Ricardo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4050-9464</orcidid></search><sort><creationdate>20110101</creationdate><title>Microbial community structure across the tree of life in the extreme Río Tinto</title><author>Amaral-Zettler, Linda A ; Zettler, Erik R ; Theroux, Susanna M ; Palacios, Carmen ; Aguilera, Angeles ; Amils, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>631/181/757</topic><topic>631/326/2565/547</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Community structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Ecology</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Eukaryota - classification</topic><topic>Eukaryota - genetics</topic><topic>Evolutionary Biology</topic><topic>Genes, rRNA - genetics</topic><topic>Heavy metals</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Original</topic><topic>original-article</topic><topic>Rivers</topic><topic>Spain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amaral-Zettler, Linda A</creatorcontrib><creatorcontrib>Zettler, Erik R</creatorcontrib><creatorcontrib>Theroux, Susanna M</creatorcontrib><creatorcontrib>Palacios, Carmen</creatorcontrib><creatorcontrib>Aguilera, Angeles</creatorcontrib><creatorcontrib>Amils, Ricardo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amaral-Zettler, Linda A</au><au>Zettler, Erik R</au><au>Theroux, Susanna M</au><au>Palacios, Carmen</au><au>Aguilera, Angeles</au><au>Amils, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial community structure across the tree of life in the extreme Río Tinto</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>5</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>Understanding biotic versus abiotic forces that shape community structure is a fundamental aim of microbial ecology. The acidic and heavy metal extreme Río Tinto (RT) in southwestern Spain provides a rare opportunity to conduct an ecosystem-wide biodiversity inventory at the level of all three domains of life, because diversity there is low and almost exclusively microbial. Despite improvements in high-throughput DNA sequencing, environmental biodiversity studies that use molecular metrics and consider entire ecosystems are rare. These studies can be prohibitively expensive if domains are considered separately, and differences in copy number of eukaryotic ribosomal RNA genes can bias estimates of relative abundances of phylotypes recovered. In this study we have overcome these barriers (1) by targeting all three domains in a single polymerase chain reaction amplification and (2) by using a replicated sampling design that allows for incidence-based methods to extract measures of richness and carry out downstream analyses that address community structuring effects. Our work showed that combined bacterial and archaeal richness is an order of magnitude higher than eukaryotic richness. We also found that eukaryotic richness was highest at the most extreme sites, whereas combined bacterial and archaeal richness was highest at less extreme sites. Quantitative community phylogenetics showed abiotic forces to be primarily responsible for shaping the RT community structure. Canonical correspondence analysis revealed co-occurrence of obligate symbionts and their putative hosts that may contribute to biotic forces shaping community structure and may further provide a possible mechanism for persistence of certain low-abundance bacteria encountered in the RT.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20631808</pmid><doi>10.1038/ismej.2010.101</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4050-9464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2011-01, Vol.5 (1), p.42-50
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3105667
source NCBI_PubMed Central(免费); Open Access: Oxford University Press Open Journals
subjects 631/181/757
631/326/2565/547
Archaea - classification
Archaea - genetics
Bacteria
Bacteria - classification
Bacteria - genetics
Biodiversity
Biomedical and Life Sciences
Biota
Community structure
Deoxyribonucleic acid
DNA
Ecology
Ecosystems
Environment
Eukaryota - classification
Eukaryota - genetics
Evolutionary Biology
Genes, rRNA - genetics
Heavy metals
Life Sciences
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Original
original-article
Rivers
Spain
title Microbial community structure across the tree of life in the extreme Río Tinto
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20community%20structure%20across%20the%20tree%20of%20life%20in%20the%20extreme%20R%C3%ADo%20Tinto&rft.jtitle=The%20ISME%20Journal&rft.au=Amaral-Zettler,%20Linda%20A&rft.date=2011-01-01&rft.volume=5&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2010.101&rft_dat=%3Cproquest_pubme%3E904481348%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c616t-2a290a1da48bc3299f78c175ebc8adc38fc6a283374364b651e0289a4551182b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027938666&rft_id=info:pmid/20631808&rfr_iscdi=true