Loading…

Formation of a Stable RuvA Protein Double Tetramer Is Required for Efficient Branch Migration in Vitro and for Replication Fork Reversal in Vivo

In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-06, Vol.286 (25), p.22372-22383
Main Authors: Bradley, Alison S., Baharoglu, Zeynep, Niewiarowski, Andrew, Michel, Bénédicte, Tsaneva, Irina R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3
cites cdi_FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3
container_end_page 22383
container_issue 25
container_start_page 22372
container_title The Journal of biological chemistry
container_volume 286
creator Bradley, Alison S.
Baharoglu, Zeynep
Niewiarowski, Andrew
Michel, Bénédicte
Tsaneva, Irina R.
description In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2KaP, specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2KaP is fully active for homologous recombination in vivo. RuvA2KaP is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2KaP for forks is decreased compared with wild type. Accordingly, RuvA2KaP is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2KaP is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2KaP is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.
doi_str_mv 10.1074/jbc.M111.233908
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3121385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819489485</els_id><sourcerecordid>21531731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3</originalsourceid><addsrcrecordid>eNp1UctOHDEQtFAQbIAzN-QfmMVte3bGl0iEAEECgZaHuFl-gmF2vPHMjsRf5JPj1QAKB_rSUndV9aMQ2gcyBVLxw2dtppcAMKWMCVJvoAmQmhWshIdvaEIIhULQst5G37vumeTgArbQNoWSQcVggv6exrRQfYgtjh4rfNMr3Tg8Xw1H-DrF3oUW_4qrde3W9UktXMLnHZ67P6uQnMU-JnzifTDBtT3-mVRrnvBleEyjZmbfhz5FrNoRO3fLJpixmUe_5MLgUqeaETrEXbTpVdO5vbe8g-5OT26PfxcXV2fnx0cXheGc9oXmFdUVJ5awilogzlpfmpkpaaWZ11QIPSMgZgpMpXi-WzFecyu8sMozqtkO-jHqLld64azJ6yfVyGUKC5VeZVRBfu604Uk-xkEyoMDqMgscjgImxa5Lzn9wgci1OTKbI9fmyNGczDj4f-QH_t2NDBAjwOXDh-CS7NZ_Nc7mX5te2hi-FP8Hf7eg3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formation of a Stable RuvA Protein Double Tetramer Is Required for Efficient Branch Migration in Vitro and for Replication Fork Reversal in Vivo</title><source>PubMed (Medline)</source><source>ScienceDirect Journals</source><creator>Bradley, Alison S. ; Baharoglu, Zeynep ; Niewiarowski, Andrew ; Michel, Bénédicte ; Tsaneva, Irina R.</creator><creatorcontrib>Bradley, Alison S. ; Baharoglu, Zeynep ; Niewiarowski, Andrew ; Michel, Bénédicte ; Tsaneva, Irina R.</creatorcontrib><description>In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2KaP, specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2KaP is fully active for homologous recombination in vivo. RuvA2KaP is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2KaP for forks is decreased compared with wild type. Accordingly, RuvA2KaP is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2KaP is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2KaP is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.233908</identifier><identifier>PMID: 21531731</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - metabolism ; Bacteria ; DNA and Chromosomes ; DNA Damage ; DNA Enzymes ; DNA Helicases - chemistry ; DNA Helicases - genetics ; DNA Helicases - metabolism ; DNA Recombination ; DNA Repair ; DNA Replication ; DNA, Cruciform - genetics ; DNA, Cruciform - metabolism ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Movement ; Mutagenesis ; Mutation ; Protein Multimerization ; Protein Stability ; Protein Structure, Quaternary</subject><ispartof>The Journal of biological chemistry, 2011-06, Vol.286 (25), p.22372-22383</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3</citedby><cites>FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3121385/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819489485$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3535,27903,27904,45759,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21531731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bradley, Alison S.</creatorcontrib><creatorcontrib>Baharoglu, Zeynep</creatorcontrib><creatorcontrib>Niewiarowski, Andrew</creatorcontrib><creatorcontrib>Michel, Bénédicte</creatorcontrib><creatorcontrib>Tsaneva, Irina R.</creatorcontrib><title>Formation of a Stable RuvA Protein Double Tetramer Is Required for Efficient Branch Migration in Vitro and for Replication Fork Reversal in Vivo</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2KaP, specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2KaP is fully active for homologous recombination in vivo. RuvA2KaP is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2KaP for forks is decreased compared with wild type. Accordingly, RuvA2KaP is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2KaP is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2KaP is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Bacteria</subject><subject>DNA and Chromosomes</subject><subject>DNA Damage</subject><subject>DNA Enzymes</subject><subject>DNA Helicases - chemistry</subject><subject>DNA Helicases - genetics</subject><subject>DNA Helicases - metabolism</subject><subject>DNA Recombination</subject><subject>DNA Repair</subject><subject>DNA Replication</subject><subject>DNA, Cruciform - genetics</subject><subject>DNA, Cruciform - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Movement</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Protein Multimerization</subject><subject>Protein Stability</subject><subject>Protein Structure, Quaternary</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1UctOHDEQtFAQbIAzN-QfmMVte3bGl0iEAEECgZaHuFl-gmF2vPHMjsRf5JPj1QAKB_rSUndV9aMQ2gcyBVLxw2dtppcAMKWMCVJvoAmQmhWshIdvaEIIhULQst5G37vumeTgArbQNoWSQcVggv6exrRQfYgtjh4rfNMr3Tg8Xw1H-DrF3oUW_4qrde3W9UktXMLnHZ67P6uQnMU-JnzifTDBtT3-mVRrnvBleEyjZmbfhz5FrNoRO3fLJpixmUe_5MLgUqeaETrEXbTpVdO5vbe8g-5OT26PfxcXV2fnx0cXheGc9oXmFdUVJ5awilogzlpfmpkpaaWZ11QIPSMgZgpMpXi-WzFecyu8sMozqtkO-jHqLld64azJ6yfVyGUKC5VeZVRBfu604Uk-xkEyoMDqMgscjgImxa5Lzn9wgci1OTKbI9fmyNGczDj4f-QH_t2NDBAjwOXDh-CS7NZ_Nc7mX5te2hi-FP8Hf7eg3Q</recordid><startdate>20110624</startdate><enddate>20110624</enddate><creator>Bradley, Alison S.</creator><creator>Baharoglu, Zeynep</creator><creator>Niewiarowski, Andrew</creator><creator>Michel, Bénédicte</creator><creator>Tsaneva, Irina R.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110624</creationdate><title>Formation of a Stable RuvA Protein Double Tetramer Is Required for Efficient Branch Migration in Vitro and for Replication Fork Reversal in Vivo</title><author>Bradley, Alison S. ; Baharoglu, Zeynep ; Niewiarowski, Andrew ; Michel, Bénédicte ; Tsaneva, Irina R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Bacteria</topic><topic>DNA and Chromosomes</topic><topic>DNA Damage</topic><topic>DNA Enzymes</topic><topic>DNA Helicases - chemistry</topic><topic>DNA Helicases - genetics</topic><topic>DNA Helicases - metabolism</topic><topic>DNA Recombination</topic><topic>DNA Repair</topic><topic>DNA Replication</topic><topic>DNA, Cruciform - genetics</topic><topic>DNA, Cruciform - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Movement</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Protein Multimerization</topic><topic>Protein Stability</topic><topic>Protein Structure, Quaternary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bradley, Alison S.</creatorcontrib><creatorcontrib>Baharoglu, Zeynep</creatorcontrib><creatorcontrib>Niewiarowski, Andrew</creatorcontrib><creatorcontrib>Michel, Bénédicte</creatorcontrib><creatorcontrib>Tsaneva, Irina R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bradley, Alison S.</au><au>Baharoglu, Zeynep</au><au>Niewiarowski, Andrew</au><au>Michel, Bénédicte</au><au>Tsaneva, Irina R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of a Stable RuvA Protein Double Tetramer Is Required for Efficient Branch Migration in Vitro and for Replication Fork Reversal in Vivo</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-06-24</date><risdate>2011</risdate><volume>286</volume><issue>25</issue><spage>22372</spage><epage>22383</epage><pages>22372-22383</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2KaP, specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2KaP is fully active for homologous recombination in vivo. RuvA2KaP is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2KaP for forks is decreased compared with wild type. Accordingly, RuvA2KaP is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2KaP is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2KaP is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21531731</pmid><doi>10.1074/jbc.M111.233908</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-06, Vol.286 (25), p.22372-22383
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3121385
source PubMed (Medline); ScienceDirect Journals
subjects Adenosine Triphosphatases - metabolism
Bacteria
DNA and Chromosomes
DNA Damage
DNA Enzymes
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA Recombination
DNA Repair
DNA Replication
DNA, Cruciform - genetics
DNA, Cruciform - metabolism
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Movement
Mutagenesis
Mutation
Protein Multimerization
Protein Stability
Protein Structure, Quaternary
title Formation of a Stable RuvA Protein Double Tetramer Is Required for Efficient Branch Migration in Vitro and for Replication Fork Reversal in Vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20a%20Stable%20RuvA%20Protein%20Double%20Tetramer%20Is%20Required%20for%20Efficient%20Branch%20Migration%20in%20Vitro%20and%20for%20Replication%20Fork%20Reversal%20in%20Vivo&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bradley,%20Alison%20S.&rft.date=2011-06-24&rft.volume=286&rft.issue=25&rft.spage=22372&rft.epage=22383&rft.pages=22372-22383&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.233908&rft_dat=%3Cpubmed_cross%3E21531731%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-b472b740d0372d10eddf5c6c527b3fb299b60196a1c7a4004a3484d9f9daf32b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/21531731&rfr_iscdi=true