Loading…
Mapping functional regions of the segment-specific transcription factor Krox-20
Krox-20, a zinc finger transcription factor with similarity to Sp1, is likely to play an important role in the development of the vertebrate central nervous system. A knowledge of its molecular properties will help to understand its physiological functions. We have therefore performed a structure-fu...
Saved in:
Published in: | Nucleic acids research 1992-05, Vol.20 (10), p.2485-2492 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Krox-20, a zinc finger transcription factor with similarity to Sp1, is likely to play an important role in the development of the vertebrate central nervous system. A knowledge of its molecular properties will help to understand its physiological functions. We have therefore performed a structure-function analysis of the protein to identify the regions involved in DNA-binding and transcriptional activation. Our data suggest that only the zinc fingers are required for high affinity, specific DNA-binding. Transcriptional activation was not affected by deletion of the C-terminal tail of the protein. In contrast, deletion of the N-terminal half, upstream of the zinc fingers, completely abolished transactivation without affecting DNA-binding or nuclear localization. Two transcriptional activation domains were identified in this region. They cooperate to establish full activity. They are rich in negatively-charged amino acids and are therefore may constitute acidic activation domains. Comparative analysis of the amino acid sequences of several zinc finger proteins belonging to the Krox-20 subfamily indicates that they contain acidic regions at similar locations within their N-terminal region, suggesting that the functional organization of these proteins has been conserved during evolution. |
---|---|
ISSN: | 0305-1048 1362-4962 |
DOI: | 10.1093/nar/20.10.2485 |