Loading…

Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells

We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueou...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2011-07, Vol.101 (2), p.421-430
Main Authors: Dhar, A., Girdhar, K., Singh, D., Gelman, H., Ebbinghaus, S., Gruebele, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03
cites cdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03
container_end_page 430
container_issue 2
container_start_page 421
container_title Biophysical journal
container_volume 101
creator Dhar, A.
Girdhar, K.
Singh, D.
Gelman, H.
Ebbinghaus, S.
Gruebele, M.
description We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.
doi_str_mv 10.1016/j.bpj.2011.05.071
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3136782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349511007168</els_id><sourcerecordid>878279038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhB3ABiwunhLEd24mQkNBqS1ErQJSeLcdxto4Se2snlfrv8bJtBRx6sjT-3tO8eQi9JlASIOLDULa7oaRASAm8BEmeoBXhFS0AavEUrQBAFKxq-BF6kdIAQCgH8hwdUSKFzPMVMj9imK3z-GLWrRvdfIu17_BJGDvnt_jMeTs7k3Am5iuLvy1mtEv6w2x8F3ajTpMz-OeeWsZlwqHHm8XoeBvyBK_tOKaX6Fmvx2Rf3b3H6PJk82t9Wpx___J1_fm8MFzIuaBNS7q2ssRWsmFQVaLhhvJampb0vWSSdbqltDJN3_Ke8Y5aQXTFqpw4y4Ado08H393STrYz1s9Rj2oX3ZT3UUE79e-Pd1dqG24UI0zImmaD93cGMVwvNs1qcsnkCNrbsCRVZ0g2wOpMvvuPHMISfU6n6hoaIQTd25EDZGJIKdr-YRUCal-gGlQuUO0LVMBVLjBr3vyd4UFx31gG3h6AXgelt9EldXmRHXhul5AGmkx8PBA23_rG2aiScdYb27lozay64B5Z4Dcxd7VV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880966622</pqid></control><display><type>article</type><title>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</title><source>PubMed Central</source><creator>Dhar, A. ; Girdhar, K. ; Singh, D. ; Gelman, H. ; Ebbinghaus, S. ; Gruebele, M.</creator><creatorcontrib>Dhar, A. ; Girdhar, K. ; Singh, D. ; Gelman, H. ; Ebbinghaus, S. ; Gruebele, M.</creatorcontrib><description>We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.05.071</identifier><identifier>PMID: 21767495</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aqueous solutions ; Cell Compartmentation ; Cell Nucleus - enzymology ; Cytoplasm ; endoplasmic reticulum ; Endoplasmic Reticulum - enzymology ; energy transfer ; Enzyme Stability ; Eukaryotes ; eukaryotic cells ; Eukaryotic Cells - enzymology ; Fluorescence Resonance Energy Transfer ; Kinases ; Kinetics ; phosphoglycerate kinase ; Phosphoglycerate Kinase - chemistry ; Phosphoglycerate Kinase - metabolism ; Protein ; Protein Folding ; Protein Transport ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - enzymology ; Subcellular Fractions - enzymology ; thermodynamics ; Transition Temperature</subject><ispartof>Biophysical journal, 2011-07, Vol.101 (2), p.421-430</ispartof><rights>2011 Biophysical Society</rights><rights>Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 20, 2011</rights><rights>2011 by the Biophysical Society. 2011 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</citedby><cites>FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136782/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136782/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21767495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Girdhar, K.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Gelman, H.</creatorcontrib><creatorcontrib>Ebbinghaus, S.</creatorcontrib><creatorcontrib>Gruebele, M.</creatorcontrib><title>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.</description><subject>Aqueous solutions</subject><subject>Cell Compartmentation</subject><subject>Cell Nucleus - enzymology</subject><subject>Cytoplasm</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>energy transfer</subject><subject>Enzyme Stability</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Eukaryotic Cells - enzymology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>phosphoglycerate kinase</subject><subject>Phosphoglycerate Kinase - chemistry</subject><subject>Phosphoglycerate Kinase - metabolism</subject><subject>Protein</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Subcellular Fractions - enzymology</subject><subject>thermodynamics</subject><subject>Transition Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EokvhB3ABiwunhLEd24mQkNBqS1ErQJSeLcdxto4Se2snlfrv8bJtBRx6sjT-3tO8eQi9JlASIOLDULa7oaRASAm8BEmeoBXhFS0AavEUrQBAFKxq-BF6kdIAQCgH8hwdUSKFzPMVMj9imK3z-GLWrRvdfIu17_BJGDvnt_jMeTs7k3Am5iuLvy1mtEv6w2x8F3ajTpMz-OeeWsZlwqHHm8XoeBvyBK_tOKaX6Fmvx2Rf3b3H6PJk82t9Wpx___J1_fm8MFzIuaBNS7q2ssRWsmFQVaLhhvJampb0vWSSdbqltDJN3_Ke8Y5aQXTFqpw4y4Ado08H393STrYz1s9Rj2oX3ZT3UUE79e-Pd1dqG24UI0zImmaD93cGMVwvNs1qcsnkCNrbsCRVZ0g2wOpMvvuPHMISfU6n6hoaIQTd25EDZGJIKdr-YRUCal-gGlQuUO0LVMBVLjBr3vyd4UFx31gG3h6AXgelt9EldXmRHXhul5AGmkx8PBA23_rG2aiScdYb27lozay64B5Z4Dcxd7VV</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Dhar, A.</creator><creator>Girdhar, K.</creator><creator>Singh, D.</creator><creator>Gelman, H.</creator><creator>Ebbinghaus, S.</creator><creator>Gruebele, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110720</creationdate><title>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</title><author>Dhar, A. ; Girdhar, K. ; Singh, D. ; Gelman, H. ; Ebbinghaus, S. ; Gruebele, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aqueous solutions</topic><topic>Cell Compartmentation</topic><topic>Cell Nucleus - enzymology</topic><topic>Cytoplasm</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>energy transfer</topic><topic>Enzyme Stability</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Eukaryotic Cells - enzymology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>phosphoglycerate kinase</topic><topic>Phosphoglycerate Kinase - chemistry</topic><topic>Phosphoglycerate Kinase - metabolism</topic><topic>Protein</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Subcellular Fractions - enzymology</topic><topic>thermodynamics</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Girdhar, K.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Gelman, H.</creatorcontrib><creatorcontrib>Ebbinghaus, S.</creatorcontrib><creatorcontrib>Gruebele, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhar, A.</au><au>Girdhar, K.</au><au>Singh, D.</au><au>Gelman, H.</au><au>Ebbinghaus, S.</au><au>Gruebele, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2011-07-20</date><risdate>2011</risdate><volume>101</volume><issue>2</issue><spage>421</spage><epage>430</epage><pages>421-430</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21767495</pmid><doi>10.1016/j.bpj.2011.05.071</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2011-07, Vol.101 (2), p.421-430
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3136782
source PubMed Central
subjects Aqueous solutions
Cell Compartmentation
Cell Nucleus - enzymology
Cytoplasm
endoplasmic reticulum
Endoplasmic Reticulum - enzymology
energy transfer
Enzyme Stability
Eukaryotes
eukaryotic cells
Eukaryotic Cells - enzymology
Fluorescence Resonance Energy Transfer
Kinases
Kinetics
phosphoglycerate kinase
Phosphoglycerate Kinase - chemistry
Phosphoglycerate Kinase - metabolism
Protein
Protein Folding
Protein Transport
Saccharomyces cerevisiae - cytology
Saccharomyces cerevisiae - enzymology
Subcellular Fractions - enzymology
thermodynamics
Transition Temperature
title Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Stability%20and%20Folding%20Kinetics%20in%20the%20Nucleus%20and%20Endoplasmic%20Reticulum%20of%20Eucaryotic%20Cells&rft.jtitle=Biophysical%20journal&rft.au=Dhar,%20A.&rft.date=2011-07-20&rft.volume=101&rft.issue=2&rft.spage=421&rft.epage=430&rft.pages=421-430&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.05.071&rft_dat=%3Cproquest_pubme%3E878279038%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880966622&rft_id=info:pmid/21767495&rfr_iscdi=true