Loading…
Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells
We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueou...
Saved in:
Published in: | Biophysical journal 2011-07, Vol.101 (2), p.421-430 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03 |
---|---|
cites | cdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03 |
container_end_page | 430 |
container_issue | 2 |
container_start_page | 421 |
container_title | Biophysical journal |
container_volume | 101 |
creator | Dhar, A. Girdhar, K. Singh, D. Gelman, H. Ebbinghaus, S. Gruebele, M. |
description | We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus. |
doi_str_mv | 10.1016/j.bpj.2011.05.071 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3136782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349511007168</els_id><sourcerecordid>878279038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EokvhB3ABiwunhLEd24mQkNBqS1ErQJSeLcdxto4Se2snlfrv8bJtBRx6sjT-3tO8eQi9JlASIOLDULa7oaRASAm8BEmeoBXhFS0AavEUrQBAFKxq-BF6kdIAQCgH8hwdUSKFzPMVMj9imK3z-GLWrRvdfIu17_BJGDvnt_jMeTs7k3Am5iuLvy1mtEv6w2x8F3ajTpMz-OeeWsZlwqHHm8XoeBvyBK_tOKaX6Fmvx2Rf3b3H6PJk82t9Wpx___J1_fm8MFzIuaBNS7q2ssRWsmFQVaLhhvJampb0vWSSdbqltDJN3_Ke8Y5aQXTFqpw4y4Ado08H393STrYz1s9Rj2oX3ZT3UUE79e-Pd1dqG24UI0zImmaD93cGMVwvNs1qcsnkCNrbsCRVZ0g2wOpMvvuPHMISfU6n6hoaIQTd25EDZGJIKdr-YRUCal-gGlQuUO0LVMBVLjBr3vyd4UFx31gG3h6AXgelt9EldXmRHXhul5AGmkx8PBA23_rG2aiScdYb27lozay64B5Z4Dcxd7VV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880966622</pqid></control><display><type>article</type><title>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</title><source>PubMed Central</source><creator>Dhar, A. ; Girdhar, K. ; Singh, D. ; Gelman, H. ; Ebbinghaus, S. ; Gruebele, M.</creator><creatorcontrib>Dhar, A. ; Girdhar, K. ; Singh, D. ; Gelman, H. ; Ebbinghaus, S. ; Gruebele, M.</creatorcontrib><description>We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2011.05.071</identifier><identifier>PMID: 21767495</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aqueous solutions ; Cell Compartmentation ; Cell Nucleus - enzymology ; Cytoplasm ; endoplasmic reticulum ; Endoplasmic Reticulum - enzymology ; energy transfer ; Enzyme Stability ; Eukaryotes ; eukaryotic cells ; Eukaryotic Cells - enzymology ; Fluorescence Resonance Energy Transfer ; Kinases ; Kinetics ; phosphoglycerate kinase ; Phosphoglycerate Kinase - chemistry ; Phosphoglycerate Kinase - metabolism ; Protein ; Protein Folding ; Protein Transport ; Saccharomyces cerevisiae - cytology ; Saccharomyces cerevisiae - enzymology ; Subcellular Fractions - enzymology ; thermodynamics ; Transition Temperature</subject><ispartof>Biophysical journal, 2011-07, Vol.101 (2), p.421-430</ispartof><rights>2011 Biophysical Society</rights><rights>Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Biophysical Society Jul 20, 2011</rights><rights>2011 by the Biophysical Society. 2011 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</citedby><cites>FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136782/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136782/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21767495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Girdhar, K.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Gelman, H.</creatorcontrib><creatorcontrib>Ebbinghaus, S.</creatorcontrib><creatorcontrib>Gruebele, M.</creatorcontrib><title>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.</description><subject>Aqueous solutions</subject><subject>Cell Compartmentation</subject><subject>Cell Nucleus - enzymology</subject><subject>Cytoplasm</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - enzymology</subject><subject>energy transfer</subject><subject>Enzyme Stability</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Eukaryotic Cells - enzymology</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Kinases</subject><subject>Kinetics</subject><subject>phosphoglycerate kinase</subject><subject>Phosphoglycerate Kinase - chemistry</subject><subject>Phosphoglycerate Kinase - metabolism</subject><subject>Protein</subject><subject>Protein Folding</subject><subject>Protein Transport</subject><subject>Saccharomyces cerevisiae - cytology</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Subcellular Fractions - enzymology</subject><subject>thermodynamics</subject><subject>Transition Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EokvhB3ABiwunhLEd24mQkNBqS1ErQJSeLcdxto4Se2snlfrv8bJtBRx6sjT-3tO8eQi9JlASIOLDULa7oaRASAm8BEmeoBXhFS0AavEUrQBAFKxq-BF6kdIAQCgH8hwdUSKFzPMVMj9imK3z-GLWrRvdfIu17_BJGDvnt_jMeTs7k3Am5iuLvy1mtEv6w2x8F3ajTpMz-OeeWsZlwqHHm8XoeBvyBK_tOKaX6Fmvx2Rf3b3H6PJk82t9Wpx___J1_fm8MFzIuaBNS7q2ssRWsmFQVaLhhvJampb0vWSSdbqltDJN3_Ke8Y5aQXTFqpw4y4Ado08H393STrYz1s9Rj2oX3ZT3UUE79e-Pd1dqG24UI0zImmaD93cGMVwvNs1qcsnkCNrbsCRVZ0g2wOpMvvuPHMISfU6n6hoaIQTd25EDZGJIKdr-YRUCal-gGlQuUO0LVMBVLjBr3vyd4UFx31gG3h6AXgelt9EldXmRHXhul5AGmkx8PBA23_rG2aiScdYb27lozay64B5Z4Dcxd7VV</recordid><startdate>20110720</startdate><enddate>20110720</enddate><creator>Dhar, A.</creator><creator>Girdhar, K.</creator><creator>Singh, D.</creator><creator>Gelman, H.</creator><creator>Ebbinghaus, S.</creator><creator>Gruebele, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110720</creationdate><title>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</title><author>Dhar, A. ; Girdhar, K. ; Singh, D. ; Gelman, H. ; Ebbinghaus, S. ; Gruebele, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aqueous solutions</topic><topic>Cell Compartmentation</topic><topic>Cell Nucleus - enzymology</topic><topic>Cytoplasm</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - enzymology</topic><topic>energy transfer</topic><topic>Enzyme Stability</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Eukaryotic Cells - enzymology</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Kinases</topic><topic>Kinetics</topic><topic>phosphoglycerate kinase</topic><topic>Phosphoglycerate Kinase - chemistry</topic><topic>Phosphoglycerate Kinase - metabolism</topic><topic>Protein</topic><topic>Protein Folding</topic><topic>Protein Transport</topic><topic>Saccharomyces cerevisiae - cytology</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Subcellular Fractions - enzymology</topic><topic>thermodynamics</topic><topic>Transition Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhar, A.</creatorcontrib><creatorcontrib>Girdhar, K.</creatorcontrib><creatorcontrib>Singh, D.</creatorcontrib><creatorcontrib>Gelman, H.</creatorcontrib><creatorcontrib>Ebbinghaus, S.</creatorcontrib><creatorcontrib>Gruebele, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhar, A.</au><au>Girdhar, K.</au><au>Singh, D.</au><au>Gelman, H.</au><au>Ebbinghaus, S.</au><au>Gruebele, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2011-07-20</date><risdate>2011</risdate><volume>101</volume><issue>2</issue><spage>421</spage><epage>430</epage><pages>421-430</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We measure the stability and folding relaxation rate of phosphoglycerate kinase (PGK) Förster resonance energy transfer (FRET) constructs localized in the nucleus or in the endoplasmic reticulum (ER) of eukaryotic cells. PGK has a more compact native state in the cellular compartments than in aqueous solution. Its native FRET signature is similar to that previously observed in a carbohydrate-crowding matrix, consistent with crowding being responsible for the compact native state of PGK in the cell. PGK folds through multiple states in vitro, but its folding kinetics is more two-state-like in the ER, so the folding mechanism can be modified by intracellular compartments. The nucleus increases PGK stability and folding rate over the cytoplasm and ER, even though the density of crowders in the nucleus is no greater than in the ER or cytoplasm. Nuclear folding kinetics (and to a lesser extent, thermodynamics) vary less from cell to cell than in the cytoplasm or ER, indicating a more homogeneous crowding and chemical environment in the nucleus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21767495</pmid><doi>10.1016/j.bpj.2011.05.071</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2011-07, Vol.101 (2), p.421-430 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3136782 |
source | PubMed Central |
subjects | Aqueous solutions Cell Compartmentation Cell Nucleus - enzymology Cytoplasm endoplasmic reticulum Endoplasmic Reticulum - enzymology energy transfer Enzyme Stability Eukaryotes eukaryotic cells Eukaryotic Cells - enzymology Fluorescence Resonance Energy Transfer Kinases Kinetics phosphoglycerate kinase Phosphoglycerate Kinase - chemistry Phosphoglycerate Kinase - metabolism Protein Protein Folding Protein Transport Saccharomyces cerevisiae - cytology Saccharomyces cerevisiae - enzymology Subcellular Fractions - enzymology thermodynamics Transition Temperature |
title | Protein Stability and Folding Kinetics in the Nucleus and Endoplasmic Reticulum of Eucaryotic Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A52%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Stability%20and%20Folding%20Kinetics%20in%20the%20Nucleus%20and%20Endoplasmic%20Reticulum%20of%20Eucaryotic%20Cells&rft.jtitle=Biophysical%20journal&rft.au=Dhar,%20A.&rft.date=2011-07-20&rft.volume=101&rft.issue=2&rft.spage=421&rft.epage=430&rft.pages=421-430&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2011.05.071&rft_dat=%3Cproquest_pubme%3E878279038%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-29b1db4e1e4793044695c2587cb1ff7373dab224c9fb5f35d2e61a434542b4e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=880966622&rft_id=info:pmid/21767495&rfr_iscdi=true |