Loading…

Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase

Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20–40 nm), compared with activated CD4+ T cells (2–5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, wherea...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2011-07, Vol.286 (28), p.25047-25055
Main Authors: Kennedy, Edward M., Daddacha, Waaqo, Slater, Rebecca, Gavegnano, Christina, Fromentin, Emilie, Schinazi, Raymond F., Kim, Baek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673
cites cdi_FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673
container_end_page 25055
container_issue 28
container_start_page 25047
container_title The Journal of biological chemistry
container_volume 286
creator Kennedy, Edward M.
Daddacha, Waaqo
Slater, Rebecca
Gavegnano, Christina
Fromentin, Emilie
Schinazi, Raymond F.
Kim, Baek
description Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20–40 nm), compared with activated CD4+ T cells (2–5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2′,3′-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.
doi_str_mv 10.1074/jbc.M111.234047
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3137078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819486663</els_id><sourcerecordid>877413358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi0EotvCmRvyjVO2ntjZxBekqrDtSi1UaIu4WbYzaV1l7dROVuLEX8erlAoOzGUO884zHy8h74AtgdXi9MHY5TUALEsumKhfkAWwhhe8gh8vyYKxEgpZVs0ROU7pgeUQEl6ToxJEJSRbLcivMzP5VvuRfgm-sNoH76zuaXu7vaHrkGvUeXoT3U7Hn_Ry2mlPr7WNYbjXd5jop-j2OW3GRNcRHyfMpI23IQ4h6tEFT01u23wvgH7DPcaEdBu1Tza6YdQJ35BXne4Tvn3KJ-R2_Xl7fllcfb3YnJ9dFVaIcixqoyuQTSlZU4u2Ml1TNdyAkSVKYwXKjqO1KwC9QpTY8VJ2lmk0lTVoVjU_IR9n7jCZHbY27xl1r4b5MBW0U_9WvLtXd2GvOPCa1U0GfHgCxJDPTKPauWSx77XHMCXV1LUAzquD8nRW5i-lFLF7ngJMHVxT2TV1cE3NruWO938v96z_Y1MWyFmA-UV7h1El69BbbF1EO6o2uP_CfwNT7am0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>877413358</pqid></control><display><type>article</type><title>Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase</title><source>ScienceDirect</source><source>PubMed Central(OpenAccess)</source><creator>Kennedy, Edward M. ; Daddacha, Waaqo ; Slater, Rebecca ; Gavegnano, Christina ; Fromentin, Emilie ; Schinazi, Raymond F. ; Kim, Baek</creator><creatorcontrib>Kennedy, Edward M. ; Daddacha, Waaqo ; Slater, Rebecca ; Gavegnano, Christina ; Fromentin, Emilie ; Schinazi, Raymond F. ; Kim, Baek</creatorcontrib><description>Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20–40 nm), compared with activated CD4+ T cells (2–5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2′,3′-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M111.234047</identifier><identifier>PMID: 21454906</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cells, Cultured ; DNA and Chromosomes ; DNA Polymerase ; DNA, Viral - biosynthesis ; Enzyme Kinetics ; HIV Reverse Transcriptase - metabolism ; HIV-1 - enzymology ; Humans ; Kinetics ; Macrophages - metabolism ; Mutagenesis Mechanisms ; Nucleotide ; Proviruses - metabolism ; Reverse Transcription ; Reverse Transcription - physiology ; Simian Immunodeficiency Virus - enzymology ; Uridine Triphosphate - metabolism</subject><ispartof>The Journal of biological chemistry, 2011-07, Vol.286 (28), p.25047-25055</ispartof><rights>2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2011 by The American Society for Biochemistry and Molecular Biology, Inc. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673</citedby><cites>FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137078/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819486663$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21454906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kennedy, Edward M.</creatorcontrib><creatorcontrib>Daddacha, Waaqo</creatorcontrib><creatorcontrib>Slater, Rebecca</creatorcontrib><creatorcontrib>Gavegnano, Christina</creatorcontrib><creatorcontrib>Fromentin, Emilie</creatorcontrib><creatorcontrib>Schinazi, Raymond F.</creatorcontrib><creatorcontrib>Kim, Baek</creatorcontrib><title>Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20–40 nm), compared with activated CD4+ T cells (2–5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2′,3′-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.</description><subject>Cells, Cultured</subject><subject>DNA and Chromosomes</subject><subject>DNA Polymerase</subject><subject>DNA, Viral - biosynthesis</subject><subject>Enzyme Kinetics</subject><subject>HIV Reverse Transcriptase - metabolism</subject><subject>HIV-1 - enzymology</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Macrophages - metabolism</subject><subject>Mutagenesis Mechanisms</subject><subject>Nucleotide</subject><subject>Proviruses - metabolism</subject><subject>Reverse Transcription</subject><subject>Reverse Transcription - physiology</subject><subject>Simian Immunodeficiency Virus - enzymology</subject><subject>Uridine Triphosphate - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi0EotvCmRvyjVO2ntjZxBekqrDtSi1UaIu4WbYzaV1l7dROVuLEX8erlAoOzGUO884zHy8h74AtgdXi9MHY5TUALEsumKhfkAWwhhe8gh8vyYKxEgpZVs0ROU7pgeUQEl6ToxJEJSRbLcivMzP5VvuRfgm-sNoH76zuaXu7vaHrkGvUeXoT3U7Hn_Ry2mlPr7WNYbjXd5jop-j2OW3GRNcRHyfMpI23IQ4h6tEFT01u23wvgH7DPcaEdBu1Tza6YdQJ35BXne4Tvn3KJ-R2_Xl7fllcfb3YnJ9dFVaIcixqoyuQTSlZU4u2Ml1TNdyAkSVKYwXKjqO1KwC9QpTY8VJ2lmk0lTVoVjU_IR9n7jCZHbY27xl1r4b5MBW0U_9WvLtXd2GvOPCa1U0GfHgCxJDPTKPauWSx77XHMCXV1LUAzquD8nRW5i-lFLF7ngJMHVxT2TV1cE3NruWO938v96z_Y1MWyFmA-UV7h1El69BbbF1EO6o2uP_CfwNT7am0</recordid><startdate>20110715</startdate><enddate>20110715</enddate><creator>Kennedy, Edward M.</creator><creator>Daddacha, Waaqo</creator><creator>Slater, Rebecca</creator><creator>Gavegnano, Christina</creator><creator>Fromentin, Emilie</creator><creator>Schinazi, Raymond F.</creator><creator>Kim, Baek</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20110715</creationdate><title>Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase</title><author>Kennedy, Edward M. ; Daddacha, Waaqo ; Slater, Rebecca ; Gavegnano, Christina ; Fromentin, Emilie ; Schinazi, Raymond F. ; Kim, Baek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cells, Cultured</topic><topic>DNA and Chromosomes</topic><topic>DNA Polymerase</topic><topic>DNA, Viral - biosynthesis</topic><topic>Enzyme Kinetics</topic><topic>HIV Reverse Transcriptase - metabolism</topic><topic>HIV-1 - enzymology</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Macrophages - metabolism</topic><topic>Mutagenesis Mechanisms</topic><topic>Nucleotide</topic><topic>Proviruses - metabolism</topic><topic>Reverse Transcription</topic><topic>Reverse Transcription - physiology</topic><topic>Simian Immunodeficiency Virus - enzymology</topic><topic>Uridine Triphosphate - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kennedy, Edward M.</creatorcontrib><creatorcontrib>Daddacha, Waaqo</creatorcontrib><creatorcontrib>Slater, Rebecca</creatorcontrib><creatorcontrib>Gavegnano, Christina</creatorcontrib><creatorcontrib>Fromentin, Emilie</creatorcontrib><creatorcontrib>Schinazi, Raymond F.</creatorcontrib><creatorcontrib>Kim, Baek</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kennedy, Edward M.</au><au>Daddacha, Waaqo</au><au>Slater, Rebecca</au><au>Gavegnano, Christina</au><au>Fromentin, Emilie</au><au>Schinazi, Raymond F.</au><au>Kim, Baek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2011-07-15</date><risdate>2011</risdate><volume>286</volume><issue>28</issue><spage>25047</spage><epage>25055</epage><pages>25047-25055</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20–40 nm), compared with activated CD4+ T cells (2–5 μm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 μm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2′,3′-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>21454906</pmid><doi>10.1074/jbc.M111.234047</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2011-07, Vol.286 (28), p.25047-25055
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3137078
source ScienceDirect; PubMed Central(OpenAccess)
subjects Cells, Cultured
DNA and Chromosomes
DNA Polymerase
DNA, Viral - biosynthesis
Enzyme Kinetics
HIV Reverse Transcriptase - metabolism
HIV-1 - enzymology
Humans
Kinetics
Macrophages - metabolism
Mutagenesis Mechanisms
Nucleotide
Proviruses - metabolism
Reverse Transcription
Reverse Transcription - physiology
Simian Immunodeficiency Virus - enzymology
Uridine Triphosphate - metabolism
title Abundant Non-canonical dUTP Found in Primary Human Macrophages Drives Its Frequent Incorporation by HIV-1 Reverse Transcriptase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abundant%20Non-canonical%20dUTP%20Found%20in%20Primary%20Human%20Macrophages%20Drives%20Its%20Frequent%20Incorporation%20by%20HIV-1%20Reverse%20Transcriptase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kennedy,%20Edward%20M.&rft.date=2011-07-15&rft.volume=286&rft.issue=28&rft.spage=25047&rft.epage=25055&rft.pages=25047-25055&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M111.234047&rft_dat=%3Cproquest_pubme%3E877413358%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-7ba5198290874d5bf8583b1b92e9bc4e9f3ecc611a6ee9ef329fc0aeb5cbeb673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=877413358&rft_id=info:pmid/21454906&rfr_iscdi=true