Loading…

Efficiency of the polymerase chain reaction

The polymerase chain reaction (PCR) has found wide application in biochemistry and molecular biology such as gene expression studies, mutation detection, forensic analysis and pathogen detection. Increasingly, quantitative real time PCR is used to assess copy numbers from overall yield. In this stud...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2010-09, Vol.65 (17), p.4996-5006
Main Authors: Booth, Christine S., Pienaar, Elsje, Termaat, Joel R., Whitney, Scott E., Louw, Tobias M., Viljoen, Hendrik J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The polymerase chain reaction (PCR) has found wide application in biochemistry and molecular biology such as gene expression studies, mutation detection, forensic analysis and pathogen detection. Increasingly, quantitative real time PCR is used to assess copy numbers from overall yield. In this study the yield is analyzed as a function of several processes: (1) thermal damage of the template and polymerase occurring during the denaturing step, (2) competition existing between primers and templates to either anneal or form dsDNA, (3) polymerase binding to annealed products (primer/ssDNA) to form ternary complexes and (4) extension of ternary complexes. Explicit expressions are provided for the efficiency of each process, therefore reaction conditions can be directly linked to the overall yield. Examples are provided where different processes play the yield-limiting role. The analysis will give researchers a unique understanding of the factors that control the reaction and will aid in the interpretation of experimental results.
ISSN:0009-2509
1873-4405
DOI:10.1016/j.ces.2010.05.046